

PTB 20220 15 Watts, 915–960 MHz Cellular Radio RF Power Transistor

Description

The 20220 is a class AB, NPN, common emitter RF power transistor intended for 25 Vdc operation across the 915 to 960 MHz frequency band. Rated at 15 watts minimum output power for PEP applications, it may be used for both CW and PEP applications. Ion implantation, nitride surface passivation and gold metallization ensure excellent device reliability. 100% lot traceability is standard.

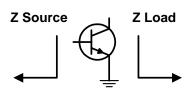
- 15 Watts, 915-960 MHz
- Class AB Characteristics
- 50% Collector Efficiency at 15 Watts
- Surface Mountable
- · Gold Metallization
- Silicon Nitride Passivated

Maximum Ratings

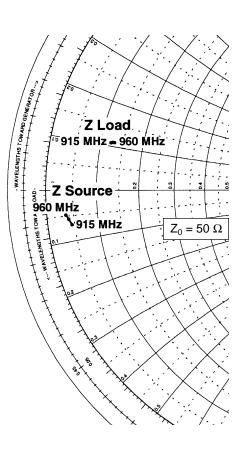
Parameter	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CER}	65	Vdc
Collector-Base Voltage	V _{CBO}	65	Vdc
Emitter-Base Voltage (collector open)	V _{EBO}	4.0	Vdc
Collector Current (continuous)	IC	4.0	Adc
Total Device Dissipation at T _{flange} = 25°C Above 25°C derate by	P _D	37 0.21	Watts W/°C
Storage Temperature Range	T _{STG}	-40 to +150	°C
Thermal Resistance	$R_{ heta JC}$	4.7	°C/W

PTB 20220

Electrical Characteristics (100% Tested)

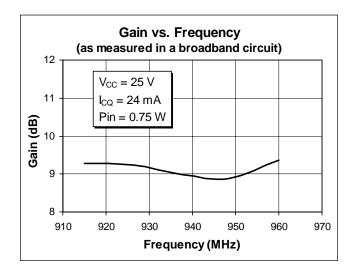

Characteristic	Conditions	Symbol	Min	Тур	Max	Units
Breakdown Voltage C to E	I _B = 0 A, I _C = 5 mA	V _{(BR)CEO}	25	_	_	Volts
Breakdown Voltage C to E	$V_{BE} = 0 \text{ V, } I_C = 5 \text{ mA}$ $V_{(BR)CES}$ 65 -		_	_	Volts	
Breakdown Voltage E to B	I _C = 0 A, I _E = 5 mA	V _{(BR)EBO}	4	5	_	Volts
DC Current Gain	V _{CE} = 5 V, I _C = 250 mA	h _{FE}	35	_	_	_
Output Capacitance	V _{CC} = 25 V, I _E = 0 A, f = 1 MHz	Cob	_	14.1	_	pF

RF Specifications (100% Tested)


Characteristic		Min	Тур	Max	Units
Gain					
$(V_{CC} = 25 \text{ Vdc}, P_{out} = 5 \text{ W}, I_{CQ} = 24 \text{ mA}, f = 960 \text{ MHz})$	G _{pe}	8.75	_	_	dB
Gain Compression					
$(V_{CC} = 25 \text{ Vdc}, P_{out} = 15 \text{ W}, I_{CQ} = 24 \text{ mA}, f = 960 \text{ MHz})$	P-1dB	15	_	_	Watts
Collector Efficiency					
$(V_{CC} = 25 \text{ Vdc}, P_{out} = 15 \text{ W}, I_{CQ} = 24 \text{ mA}, f = 960 \text{ MHz})$	ηc	50	_	_	%
Load Mismatch Tolerance					
(V _{CC} = 25 Vdc, P _{out} = 15 W, I _{CQ} = 24 mA, f = 960 MHz —all phase angles at frequency of test)	Ψ	_	_	30:1	_

Impedance Data (data shown for fixed-tuned broadband circuit)

 $(V_{CC} = 25 \text{ Vdc}, P_{Out} = 15 \text{ W}, I_{CQ} = 24 \text{ mA})$



Frequency	Z Source		Z Lo	oad
MHz	R	jХ	R	jΧ
915	2.26	-3.40	6.12	5.42
935	1.99	-2.84	6.30	5.51
960	1.75	-2.41	6.50	5.52

Typical Performance

