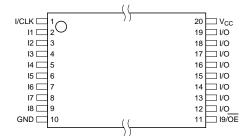
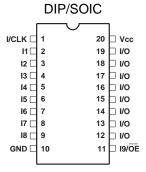
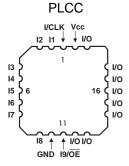

Features

- Industry Standard Architecture Emulates Many 20-Pin PALs[®] Low Cost Easy-to-Use Software Tools
 - High Speed Electrically Erasable Programmable Logic Devices
 - 12 ns Maximum Pin-to-Pin Delay
- Low Power 25 μA Standby Power
- CMOS and TTL Compatible Inputs and Outputs
 - Input and I/O Pin Keeper Circuits
 - Advanced Flash Technology
 - Reprogrammable 100% Tested
- High Reliability CMOS Process
 - 20 Year Data Retention
 - 100 Erase/Write Cycles
 - 2,000V ESD Protection
 - 200 mA Latchup Immunity
- Commercial and Industrial Temperature Ranges
- Dual Inline and Surface Mount Packages in Standard Pinouts

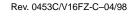

Block Diagram




Pin Configurations

Pin Name	Function
CLK	Clock
1	Logic Inputs
I/O	Bidirectional Buffers
ŌE	Output Enable
VCC	+5V Supply

TSSOP Top View



Top view

High Performance E² PLD

ATF16V8CZ

Description (Continued)

The ATF16V8CZ is a high performance EECMOS Programmable Logic Device which utilizes Atmel's proven electrically erasable Flash memory technology. Speeds down to 12 ns and a 25 μA edge-sensing power down mode are offered. All speed ranges are specified over the full 5V \pm 10% range for industrial temperature ranges; 5V \pm 5% for commercial range 5-volt devices.

The ATF16V8CZ incorporates a superset of the generic architectures, which allows direct replacement of the 16R8 family and most 20-pin combinatorial PLDs. Eight outputs are each allocated eight product terms. Three different

modes of operation, configured automatically with software, allow highly complex logic functions to be realized.

The ATF16V8CZ can significantly reduce total system power, thereby enhancing system reliability and reducing power supply costs. When all the inputs and internal nodes are not switching, supply current drops to less than 25 μA . This automatic power down feature allows for power savings in slow clock systems and asynchronous applications. Also, the pin keeper circuits eliminate the need for internal pull-up resistors along with their attendant power consumption.

Absolute Maximum Ratings*

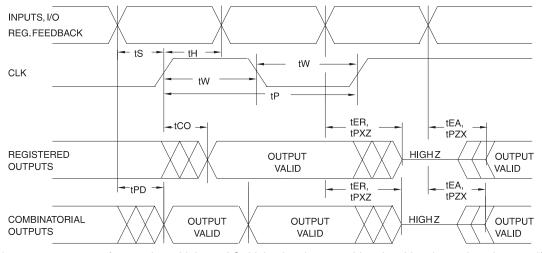
Temperature Under Bias40°C to +85°C	
Storage Temperature65°C to +150°C	
Voltage on Any Pin with Respect to Ground2.0V to +7.0V (1)	
Voltage on Input Pins with Respect to Ground During Programming2.0V to +14.0V (1)	
Programming Voltage with Respect to Ground2.0V to +14.0V (1)	

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

1. Minimum voltage is -0.6V dc, which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is Vcc + 0.75V dc, which may overshoot to 7.0V for pulses of less than 20 ns.

DC and AC Operating Conditions


	Commercial	Industrial
Operating Temperature (Case)	0°C - 70°C	-40°C - 85°C
Vcc Power Supply	5V ± 5%	5V ± 10%

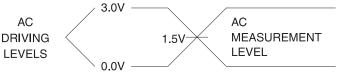
DC Characteristics

Symbol	Parameter	Condition		Min	Тур	Max	Units
IιL	Input or I/O Low Leakage Current	$0 \le V_{IN} \le V_{IL}(MAX)$				-10	μΑ
Іін	Input or I/O High Leakage Current	$3.5 \leq V_{IN} \leq V_{CC}$				10	μΑ
_		15 MHz, Vcc = MAX,	Com.			95	mA
ICC1	Power Supply Current	V _{IN} = 0, V _{CC} , Outputs Open	Ind.			105	mA
(1)	Power Supply Current,	MHz , $V_{CC} = MAX$,	Com.		5	25	μΑ
Icc (1)	Standby Mode	VIN = 0, VCC, Outputs Open	IN = 0, VCC, Outputs Open Ind.		5	50	μΑ
los	Output Short Circuit Current	Vout = 0.5V; Vcc= 5V; TA = 25°C				-150	mA
VIL	Input Low Voltage	$MIN < V_{CC} < MAX$		-0.5		8.0	V
VIH	Input High Voltage			2.0		Vcc + 1	V
VoL	Output Low Current	V _{CC} = MIN; All Outputs I _{OL} = -16 mA	Com., Ind.			0.5	V
Voн	Output High Current	V _{CC} = MIN I _{OL} = -3.2 mA		2.4			V
loL	Output Low Current	Output Low Current VCC = MIN	Com.	24			mA
IOL			Ind.	12			IIIA
Іон	Output High Current	$V_{CC} = MIN$	Com., Ind.	4			mA

Note: 1. All I_{CC} parameters measured with outputs open.

AC Waveforms (1)

Note: 1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.



AC Characteristics

		-12		-15		
Symbol	Parameter	Min	Max	Min	Max	Units
t _{PD}	Input or Feedback to Non-Registered Output	3	12	3	15	ns
tcF	Clock to Feedback		6		8	ns
tco	Clock to Output	2	8	2	10	ns
ts	Input or Feedback Setup Time	10		12		ns
tH	Input Hold Time	0		0		ns
tp	Clock Period	12		16		ns
t₩	Clock Width	6		8		ns
	External Feedback 1/(ts+ tco)		55		45	MHz
FMAX	Internal Feedback 1/(t _S + t _{CF})		62		50	MHz
	No Feedback 1/(tp)		83		62	MHz
tEA	Input to Output Enable — Product Term	3	12	3	15	ns
t _{ER}	Input to Output Disable — Product Term	2	15	2	15	ns
tpzx	OE pin to Output Enable	2	12	2	15	ns
t _{PXZ}	OE pin to Output Disable	1.5	12	1.5	15	ns

Input Test Waveforms and Measurement Levels:

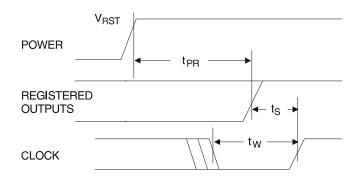
t_R, t_F < 1.5 ns (10% to 90%)

Output Test Loads

Note: Similar devices are tested with slightly different loads. These load differences may affect output signals' delay and slew rate. Atmel devices are tested with sufficient margins to meet compatible devices.

Pin Capacitance (f = 1 MHz, T = 25° C) (1)

	Тур	Max	Units	Conditions
CIN	5	8	pF	$V_{IN} = 0V$
Cout	6	8	pF	$V_{OUT} = 0V$


Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

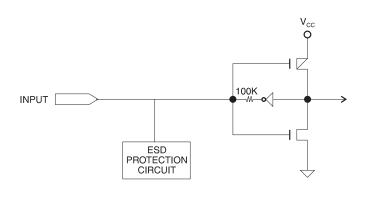
Power Up Reset

The ATF16V8CZ's registers are designed to reset during power up. At a point delayed slightly from V_{CC} crossing V_{RST} , all registers will be reset to the low state. As a result, the registered output state will always be high on power-up.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how VCC actually rises in the system, the following conditions are required:

- 1) The V_{CC} rise must be monotonic, from below .7 volts,
- 2) After reset occurs, all input and feedback setup times must be met before driving the clock term high, and
- 3) The signals from which the clock is derived must remain stable during tpR.

Parameter	Description	Тур	Max	Units
t _{PR}	Power-Up Reset Time	600	1,000	ns
V _{RST}	Power-Up Reset Voltage	3.8	4.5	V


Registered Output Preload

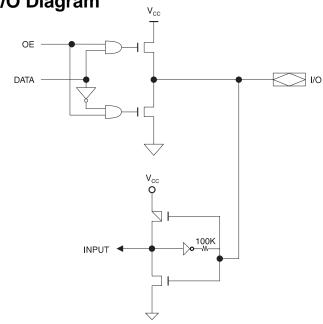
The ATF16V8CZ's registers are provided with circuitry to allow loading of each register with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A JEDEC file with preload is generated when a source file with vectors is compiled. Once downloaded, the JEDEC file preload sequence will be done automatically by approved programmers.

Input and I/O Pin Keeper Circuits

The ATF16V8CZ contains internal input and I/O pin keeper circuits. These circuits allow each ATF16V8CZ pin to hold its previous value even when it is not being driven by an external source or by the device's output buffer. This helps insure that all logic array inputs are at known, valid logic levels. This reduces system power by preventing pins from floating to indeterminate levels. By using pin keeper circuits rather than pull-up resistors, there is no DC

Input Diagram

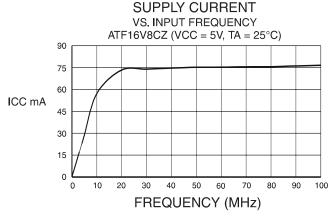
Security Fuse Usage

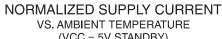

A single fuse is provided to prevent unauthorized copying of the ATF16V8CZ fuse patterns. Once programmed, fuse verify and preload are inhibited. However, the 64-bit User Signature remains accessible.

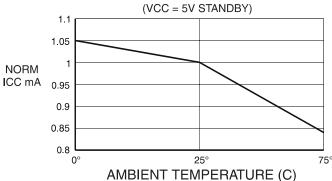
The security fuse should be programmed last, as its effect is immediate.

current required to hold the pins in either logic state (high or low).

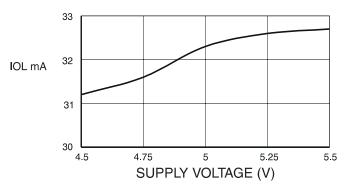
These pin keeper circuits are implemented as weak feedback inverters, as shown in the Input Diagram below. These keeper circuits can easily be overdriven by standard TTL- or CMOS-compatible drivers. The typical overdrive current required is 40 µA.

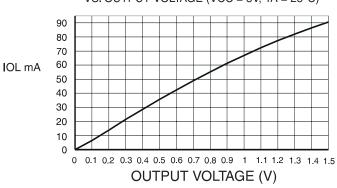

I/O Diagram

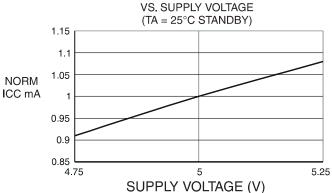


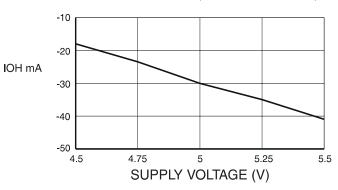

Compiler Mode Selection

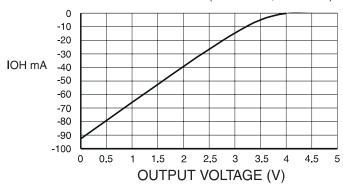
	Registered	Complex	Simple	Auto Select
ABEL, Atmel-ABEL	P16V8R	P16V8C	P16V8AS	P16V8
CUPL	G16V8MS	G16V8MA	G16V8AS	G16V8A
LOG/iC	GAL16V8_R ⁽¹⁾	GAL16V8_C7 (1)	GAL16V8_C8 (1)	GAL16V8
OrCAD-PLD	"Registered"	"Complex"	"Simple"	GAL16V8A
PLDesigner	P16V8R	P16V8C	P16V8C	P16V8A
Tango-PLD	G16V8R	G16V8C	G16V8AS	G16V8

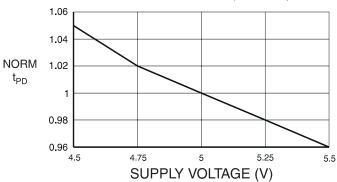

Note: 1. Only applicable for version 3.4 or lower.



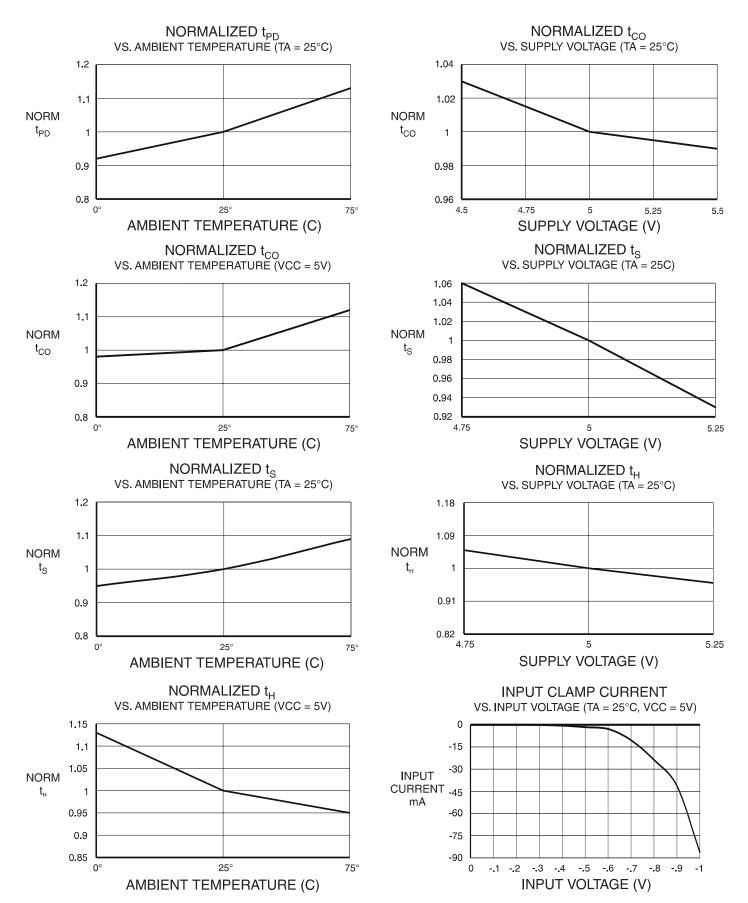

OUTPUT SINK CURRENT VS. SUPPLY VOLTAGE (TA = 25°C, VOL = 0.45V)


OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE (VCC = 5V, TA = 25°C)


NORMALIZED SUPPLY CURRENT


OUTPUT SOURCE CURRENT VS. SUPPLY VOLTAGE (VOH = 2.4V, TA = 25°C)

OUTPUT SOURCE CURRENT VS. OUTPUT VOLTAGE (VOH = 2.4V, TA = 25°C)



 $\begin{array}{c} \text{NORMALIZED} \ t_{PD} \\ \text{VS. SUPPLY VOLTAGE (TA = 25°C)} \end{array}$

Ordering Information

t _{PD} (ns)	ts (ns)	t _{CO} (ns)	Ordering Code	Package	Operation Range
12	10	8	ATF16V8CZ-12JC ATF16V8CZ-12PC ATF16V8CZ-12SC ATF16V8CZ-12XC	20J 20P3 20S 20X	Commercial (0°C to 70°C)
15	12	10	ATF16V8CZ-15JC ATF16V8CZ-15PC ATF16V8CZ-15SC ATF16V8CZ-15XC	20J 20P3 20S 20X	Commercial (0°C to 70°C)
	12	10	ATF16V8CZ-15JI ATF16V8CZ-15PI ATF16V8CZ-15SI ATF16V8CZ-15XI	20J 20P3 20S 20X	Industrial (-40°C to 85°C)

	Package Type
20J	20-Lead, Plastic J-Leaded Chip Carrier (PLCC)
20P3	20-Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
20S	20-Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)
20X	20-Lead, 4.4 mm Wide, Plastic Thin Shrink Small Outline (TSSOP)