Document Title

1Mx8 bit Low Power and Low Voltage CMOS Static RAM

Revision History

Revision No.	<u>History</u>	Draft Date	<u>Remark</u>
0.0	Initial draft	October 31, 2002	Preliminary
0.1	Revised - Deleted 44-TSOP2-400R package type Added Commercial product.	December 11, 2002	Preliminary
1.0	Finalized - Changed Icc from 10mA to 6mA - Changed Icc1 from 10mA to 7mA - Changed Icc2 from 50mA to 35mA - Changed IsB from 3mA to 0.4mA - Changed IsB1(Commercial) from 40µA to 25µA - Changed IsB1(industrial) from 40µA to 25µA - Changed IsB1(Automotive) from 50µA to 40µA - Changed IdR(Commercial) from 30µA to 15µA - Changed IdR(industrial) from 30µA to 15µA - Changed IdR(Automotive) from 40µA to 30µA	September 16, 2003	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to yourquestions about device. If you have any questions, please contact the SAMSUNG branch offices.

1Mx8 bit Low Power full CMOS Static RAM

FEATURES

• Process Technology: Full CMOS

• Organization: 1M x8

Power Supply Voltage: 4.5~5.5V
Low Data Retention Voltage: 2.0V(Min)
Three state output and TTL Compatible

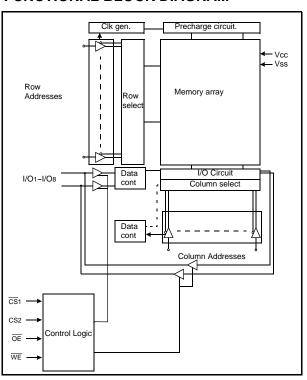
• Package Type: 44-TSOP2-400F

GENERAL DESCRIPTION

The K6X8008C2B families are fabricated by SAMSUNG's advanced full CMOS process technology. The families support various operating temperature range for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

				Power Di	ssipation			
Product Family	Operating Temperature	Vcc Range	Speed	Standby (ISB1, Max)	Operating (Icc2, Max)	PKG Type		
K6X8008C2B-B	Commercial(0~70°C)	4.5~5.5V				25μΑ		
K6X8008C2B-F	Industrial(-40~85°C)		55 ¹⁾ /70ns	25μΑ	35mA	44-TSOP2-400F		
K6X8008C2B-Q	Automotive(-40~125°C)			40μΑ				


^{1.} The parameter is measured with 50pF test load.

PIN DESCRIPTION

_		_
A4	44-TSOP2 Forward	44 A5 43 A6 42 A7 41 OE CS2 39 A8 38 NC 36 VO8 35 VO8 35 VO8 33 VC6 32 VO8 30 NC 29 NC
NC ☐ 16 WE ☐ 17		29 NC 28 A9
A19		27 A10 26 A11 25 A12 24 A13
A15		23 A14

Name	Function	Name	Function
CS ₁ , CS ₂	Chip Select Inputs	Vcc	Power
ŌE	Output Enable Input	Vss	Ground
WE	Write Enable Input	A0~A19	Address Inputs
I/O1~I/O8	Data Inputs/Outputs	NC	No Connect

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial Products(0~70°C)		Industrial Pro	ducts(-40~85°C)	Automotive Products(-40~125°C)			
Part Name	Function	Part Name	Function	Part Name	Function		
K6X8008C2B-TB55 K6X8008C2B-TB70	44-TSOP2-F, 55ns, LL 44-TSOP2-F, 70ns, LL	K6X8008C2B-TF55 K6X8008C2B-TF70	44-TSOP2-F, 55ns, LL 44-TSOP2-F, 70ns, LL	K6X8008C2B-TQ55 K6X8008C2B-TQ70	44-TSOP2-F, 55ns, L 44-TSOP2-F, 70ns, L		

FUNCTIONAL DESCRIPTION

CS ₁	CS ₂	OE	WE	I/O1~8	Mode	Power
Н	Х	Х	Х	High-Z	Deselected	Standby
Х	L	Х	Х	High-Z	Deselected	Standby
L	Н	Н	Н	High-Z	Output Disabled	Active
L	Н	L	Н	Dout	Read	Active
L	Н	Х	L	Din	Write	Active

Note: X means don't care. (Must be low or high state)

ABSOLUTE MAXIMUM RATINGS(1)

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN, VOUT	-0.5 to Vcc+0.5V(max.7.0V)	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.3 to 7.0	V	-
Power Dissipation	Pb	1.0	W	-
Storage temperature	Тѕтс	-65 to 150	°C	-
		0 to 70	°C	K6X8008C2B-B
Operating Temperature	TA	-40 to 85	°C	K6X8008C2B-F
		-40 to 125	°C	K6X8008C2B-Q

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Product	Min	Тур	Max	Unit
Supply voltage	Vcc	K6X8008C2B Family	4.5	5.0	5.5	V
Ground	Vss	All Family	0	0	0	V
Input high voltage	VIH	K6X8008C2B Family	2.2	-	Vcc+0.5 ²⁾	V
Input low voltage	VIL	K6X8008C2B Family	-0.5 ³⁾	-	0.8	V

Note:

- 1. Commercial Product: T_A=0 to 70°C, otherwise specified. Industrial Product: Ta=-40 to 85°C, otherwise specified.

 Automotive Product: Ta=-40 to 125°C, otherwise specified.

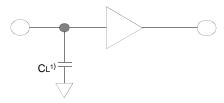
 2. Overshoot: Vcc+3.0V in case of pulse width ≤30ns.
- 3. Undershoot: -3.0V in case of pulse width ≤30ns.
- 4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	VIO=0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested.

DC AND OPERATING CHARACTERISTICS


Item	Symbol	Test Conditions	Test Conditions			Max	Unit
Input leakage current	ILI	VIN=Vss to Vcc	Vin=Vss to Vcc				μΑ
Output leakage current	ILO	$\overline{\text{CS}}_{1}=\text{ViH}, \text{CS}_{2}=\text{ViL or } \overline{\text{OE}}=\text{ViH or } \overline{\text{WE}}=\text{ViL}, \text{ViO}=\text{ViD}$	/ss to Vcc	-1	-	1	μΑ
Operating power supply current	Icc	IIO=0mA, \overline{CS}_1 =VIL, \overline{CS}_2 =VIH, \overline{WE} =VIH, \overline{VIN} =VIH	or VIL	-	-	6	mA
Average operating current	ICC1	Cycle time=1µs, 100%duty, Iio=0mA, CS1≤0.2V, CS2≥Vcc-0.2V, Vin≤0.2V or Vin≥Vcc-0.2V			-	7	mA
Two rage operating outlone	ICC2	Cycle time=Min, Iıo=0mA, 100% duty, $\overline{\text{CS}}_{1}$ =VIL VIN=VIL or VIH	-	-	35	mA	
Output low voltage	Vol	IOL = 2.1mA		-	-	0.4	V
Output high voltage	Vон	Іон = -1.0mA		2.4	-	-	V
Standby Current(TTL)	IsB	CS ₁ =VIH, CS ₂ =VIL, Other inputs=VIH or VIL		-	-	0.4	mA
		Other input =0~Vcc,	K6X8008C2B-B	-	-	25	
Standby Current(CMOS)	ISB1	1) CS₁≥Vcc-0.2V, CS₂≥Vcc-0.2V (CS₁ con-	K6X8008C2B-F	-	-	25	μΑ
		trolled) or 2) 0V≤CS2≤0.2V(CS2 controlled)	K6X8008C2B-Q	-	-	40	

AC OPERATING CONDITIONS

TEST CONDITIONS (Test Load and Input/Output Reference)

Input pulse level: 0.8 to 2.4V
Input rising and falling time: 5ns
Input and output reference voltage: 1.5V
Output load(see right): CL=100pF+1TTL
CL=50pF+1TTL

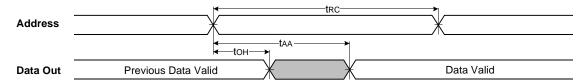
1.Including scope and jig capacitance

AC CHARACTERISTICS

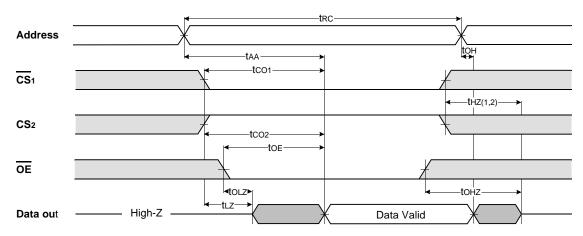
(Vcc=4.5~5.5V, Commercial product: Ta=0 to 70°C, Industrial product: Ta=-40 to 85°C, Automotive product: Ta=-40 to 125°C)

				Speed Bins				
	Parameter List		55	īns	70	Ons	Units	
			Min	Max	Min	Max		
	Read Cycle Time	trc	55	-	70	-	ns	
	Address Access Time	taa	-	55	-	70	ns	
	Chip Select to Output	tco	-	55	-	70	ns	
	Output Enable to Valid Output	toE	-	25	-	35	ns	
Read	Chip Select to Low-Z Output	tLZ	10	-	10	-	ns	
	Output Enable to Low-Z Output	toLZ	5	-	5	-	ns	
	Chip Disable to High-Z Output	tHZ	0	20	0	25	ns	
	Output Disable to High-Z Output	tonz	0	20	0	25	ns	
	Output Hold from Address Change	tон	10	-	10	-	ns	
	Write Cycle Time	twc	55	-	70	-	ns	
	Chip Select to End of Write	tcw	45	-	60	-	ns	
	Address Set-up Time	tas	0	-	0	-	ns	
	Address Valid to End of Write	taw	45	-	60	-	ns	
Write	Write Pulse Width	twp	40	-	50	-	ns	
VVIILE	Write Recovery Time	twr	0	-	0	-	ns	
	Write to Output High-Z	twHz	0	20	0	20	ns	
	Data to Write Time Overlap	tow	25	-	30	-	ns	
	Data Hold from Write Time	tDH	0	-	0	-	ns	
	End Write to Output Low-Z	tow	5	-	5	-	ns	

DATA RETENTION CHARACTERISTICS


Item	Symbol	Test Condition		Min	Тур	Max	Unit
Vcc for data retention	VDR	CS 1≥Vcc-0.2V ¹⁾	CS ₁ ≥Vcc-0.2V ¹⁾		į	5.5	V
			K6X8008C2B-B			15	μА
Data retention current	IDR	Vcc=3.0V, CS1≥Vcc-0.2V1)	K6X8008C2B-F	-	-	15	
					30		
Data retention set-up time	tsdr	See data retention waveform		0	-	-	ms
Recovery time	trdr	See data retention waveloni	5	-	-	1115	

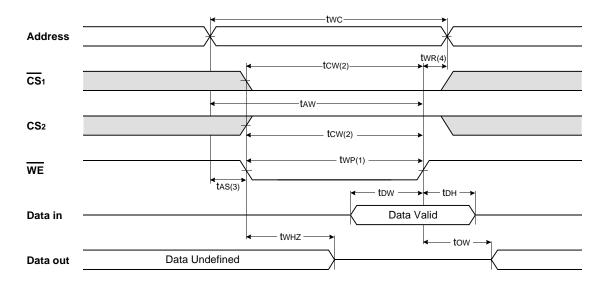
^{1.} $\overline{CS}_1 \ge Vcc-0.2V$, $CS_2 \ge Vcc-0.2V$ (\overline{CS}_1 controlled) or $CS_2 \ge Vcc-0.2V$ (CS_2 controlled).



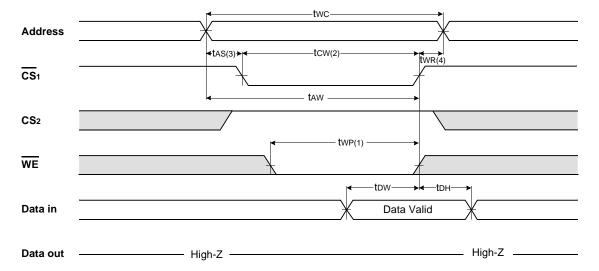
TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS1=OE=VIL, CS2=WE=VIH)

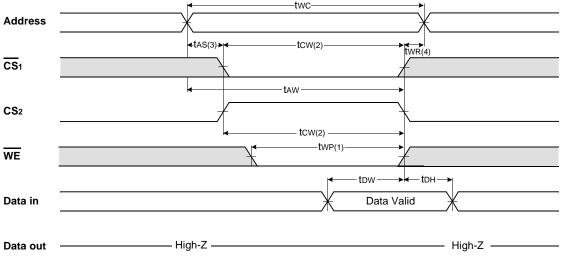
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)



NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

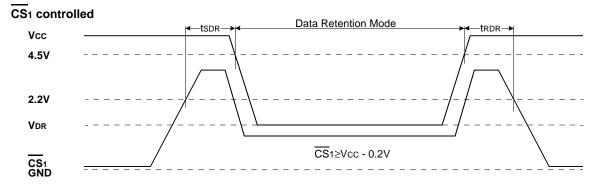
TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

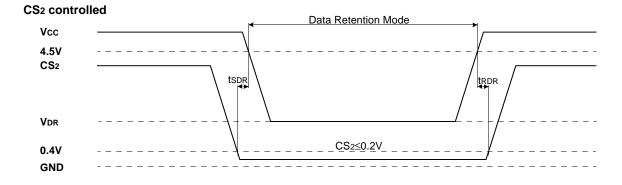


TIMING WAVEFORM OF WRITE CYCLE(2) (CS1 Controlled)

TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 Controlled)

NOTES (WRITE CYCLE)

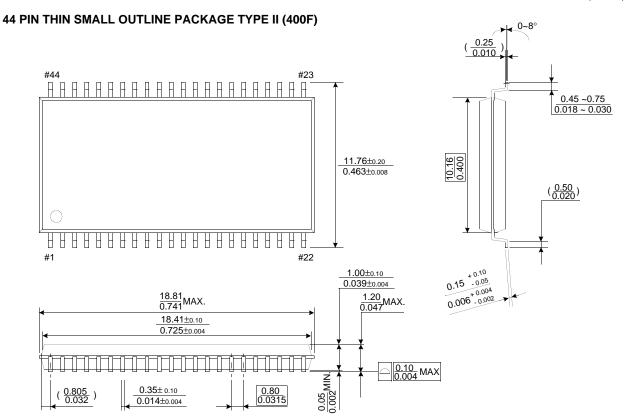

- 1. A write occurs during the overlap of a low \overline{CS}_1 , a high CS_2 and a low \overline{WE} . A write begins at the latest transition among \overline{CS}_1 goes low, CS_2 going high and \overline{WE} going low: A write end at the earliest transition among \overline{CS}_1 going high, CS_2 going low and \overline{WE} going high, two is measured from the beginning of write to the end of write.


 2. tow is measured from the \overline{CS}_1 going low or CS_2 going high to the end of write.

 3. tas is measured from the address valid to the beginning of write.

 4. two is measured from the end of write to the address change. two applied in case a write ends as \overline{CS}_1 or \overline{WE} going high two applied in case a write ends as \overline{CS}_2 going to low.

DATA RETENTION WAVE FORM



0.014±0.004

PACKAGE DIMENSIONS

Unit: millimeters(inches)

9