September 1995 Revised February 2005 # 74VHC132 ## **Quad 2-Input NAND Schmitt Trigger** ### **General Description** The VHC132 is an advanced high speed CMOS 2-input NAND Schmitt Trigger Gate fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to Bipolar Schottky TTL while maintaining the CMOS low power dissipation. Pin configuration and function are the same as the VHC00 but the inputs have hysteresis between the positive-going and negative-going input thresholds, which are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. Thus greater noise margin then conventional gates is provided. An input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages. #### **Features** - High Speed: t_{PD} = 3.9 ns (typ) at V_{CC} = 5 V - Power down protection is provided on all inputs - \blacksquare Low power dissipation: I_{CC} = 2 μA (max) at T_A = 25°C - Low noise: V_{OLP} = 0.8 V (max) - Pin and function compatible with 74HC132 ### **Ordering Code:** | Order Number | Package
Number | Package Description | |-----------------------------|-------------------|---| | 74VHC132M | M14A | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow | | 74VHC132SJ | M14D | Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide | | 74VHC132MTC | MTC14 | 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide | | 74VHC132MTCX_NL
(Note 1) | MTC14 | Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide | | 74VHC132N | N14A | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide | Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B. Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only. # **Connection Diagram** # **Pin Descriptions** | Pin Names | Description | | | | | | |---------------------------------|-------------|--|--|--|--|--| | A _n , B _n | Inputs | | | | | | | Y _n | Outputs | | | | | | # **Logic Diagram** ## **Truth Table** | Α | В | Y | |---|---|---| | L | L | Н | | L | Н | Н | | Н | L | Н | | Н | Н | L | -40°C to +85°C ## Absolute Maximum Ratings(Note 2) $\label{eq:supply Voltage VCC} \begin{tabular}{ll} Supply Voltage (V_{CC}) & -0.5V to +7.0V \\ DC Input Voltage (V_{IN}) & -0.5V to +7.0V \\ \end{tabular}$ Storage Temperature (T_{STG}) Lead Temperature (T_L) (Soldering, 10 seconds) # Recommended Operating Conditions (Note 3) Operating Temperature (T_{OPR}) **Note 2:** Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifica- tions. -65°C to +150°C 260°C Note 3: Unused inputs must be held HIGH or LOW. They may not float. #### **DC Electrical Characteristics** | Symbol | Parameter | V _{CC} | T _A = 25°C | | | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | | Units | Conditions | | |-----------------|--------------------------|-----------------|-----------------------|-----|------|---|---------------------------|-------|--------------------------|--------------------------| | Symbol | | (V) | Min | Тур | Max | Min | Max | Units | Conditions | | | V _P | Positive | 3.0 | | | 2.20 | | 2.20 | | | | | | Threshold Voltage | 4.5 | | | 3.15 | | 3.15 | V | | | | | | 5.5 | | | 3.85 | | 3.85 | | | | | V _N | Negative | 3.0 | 0.90 | | | 0.90 | | | | | | | Threshold Voltage | 4.5 | 1.35 | | | 1.35 | | V | | | | | | 5.5 | 1.65 | | | 1.65 | | | | | | V _H | Hysteresis | 3.0 | 0.30 | | 1.20 | 0.30 | 1.20 | | | | | | Output Voltage | 4.5 | 0.40 | | 1.40 | 0.40 | 1.40 | V | | | | | | 5.5 | 0.50 | | 1.60 | 0.50 | 1.60 | | | | | V _{OH} | HIGH Level | 2.0 | 1.9 | 2.0 | | 1.9 | | | $V_{IN} = V_{IH}$ | I _{OH} = -50 μA | | | Output Voltage | 3.0 | 2.9 | 3.0 | | 2.9 | | V | or V _{IL} | | | | | 4.5 | 4.4 | 4.5 | | 4.4 | | | | | | | | 3.0 | 2.58 | | | 2.48 | | V | | I _{OH} = -4 mA | | | | 4.5 | 3.94 | | | 3.80 | | | | $I_{OH} = -8 \text{ mA}$ | | V _{OL} | LOW Level | 2.0 | | 0.0 | 0.1 | | 0.1 | | $V_{IN} = V_{IH}$ | $I_{OL} = 50 \mu A$ | | | Output Voltage | 3.0 | | 0.0 | 0.1 | | 0.1 | V | or V _{IL} | | | | | 4.5 | | 0.0 | 0.1 | | 0.1 | | | | | | | 3.0 | | | 0.36 | | 0.44 | V | | I _{OL} = 4 mA | | | | 4.5 | | | 0.36 | | 0.44 | V | | $I_{OL} = 8 \text{ mA}$ | | I _{IN} | Input Leakage Current | 0–5.5 | | | ±0.1 | | ±1.0 μA V _{IN} = | | $V_{IN} = 5.5V$ | or GND | | I _{CC} | Quiescent Supply Current | 5.5 | | | 2.0 | | 20.0 | μА | $V_{IN} = V_{CC}$ or GND | | ## **Noise Characteristics** | Symbol | Parameter | v _{cc} | T _A = | 25°C | Units | Conditions | | |------------------|-------------------------|-----------------|------------------|-------|--------|------------------------|--| | - Cymbol | 1 drameter | (V) | Тур | Limit | 011110 | Conditions | | | V _{OLP} | Quiet Output Maximum | 5.0 | 0.3 | 0.8 | V | C _L = 50 pF | | | (Note 4) | Dynamic V _{OL} | | | | | | | | V _{OLV} | Quiet Output Maximum | 5.0 | -0.3 | -0.8 | V | C _L = 50 pF | | | (Note 4) | Dynamic V _{OL} | | | | | | | | V _{IHD} | Maximum HIGH Level | 5.0 | | 3.5 | V | C _L = 50 pF | | | (Note 4) | Dynamic Input Voltage | | | | | | | | V _{ILD} | Maximum LOW Level | 5.0 | | 1.5 | V | C _L = 50 pF | | | (Note 4) | Dynamic Input Voltage | | | | | | | Note 4: Parameter guaranteed by design ## **AC Electrical Characteristics** | Symbol | Parameter | V _{CC}
(V) | $T_A = 25^{\circ}C$ | | | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | | Units | Conditions | |------------------|-------------------|------------------------|---------------------|-----|------|---|------|-------|------------------------| | | | | Min | Тур | Max | Min | Max | Onito | Conditions | | t _{PHL} | Propagation Delay | 3.3 ± 0.3 | | 6.1 | 11.9 | 1.0 | 14.0 | ns | C _L = 15 pF | | t_{PLH} | | | | 8.0 | 15.4 | 1.0 | 17.5 | 115 | C _L = 50 pF | | | | 5.0 ± 0.5 | | 3.9 | 7.7 | 1.0 | 9.0 | ns | C _L = 15 pF | | | | | | 5.9 | 9.7 | 1.0 | 11.0 | 115 | C _L = 50 pF | | C _{IN} | Input Capacitance | | | 4 | 10 | | 10 | pF | V _{CC} = Open | | C _{PD} | Power Dissipation | | | 16 | | | | pF | (Note 5) | | | Capacitance | | | | | | | | | Note 5: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained from the equation: I_{CC} (opr.) = C_{PD} * V_{CC} * I_{IN} + I_{CC}/4 (per gate) 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A ## Physical Dimensions inches (millimeters) unless otherwise noted (Continued) #### NOTES: - A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATED 7/93 - B. DIMENSIONS ARE IN MILLIMETERS - C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS D. DIMENSIONING AND TOLERANCES PER ANSI Y14-5M, BOX MTC14revD 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14 #### Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770 (18.80 - 19.56)0.090 (2.286) 14 13 12 11 10 9 8 14 13 12 INDEX AREA 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA 0.030 MAX (0.762) DEPTH OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320 $\frac{0.630 - 8.128}{(7.620 - 8.128)}$ 0.060 0.145 - 0.2004° TYP Optional (1.651) (3.683 - 5.080) $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508) 0.125 - 0.150 0.075 ± 0.015 $\overline{(3.175 - 3.810)}$ (1.905 ± 0.381) (7.112) MIN 0.014 - 0.0230.100 ± 0.010 (2.540 ± 0.254) (0.356 - 0.584) $\frac{0.050 \pm 0.010}{(1.270 - 0.254)}$ TYP 0.325 ^{+0.040} -0.015 8.255 + 1.016 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com N144 (REV.F)