The RF MOSFET Line # **RF Power Field-Effect Transistor N-Channel Enhancement-Mode MOSFET** Designed for wideband large-signal amplifier and oscillator applications up to 400 MHz range, in either single ended or push-pull configuration. - Guaranteed 28 Volt, 150 MHz Performance Output Power = 30 Watts Broadband Gain = 14 dB (Typ) Efficiency = 54% (Typical) - Small-Signal and Large-Signal Characterization - 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR - Space Saving Package For Push-Pull Circuit **Applications** - Excellent Thermal Stability, Ideally Suited For Class A Operation - Facilitates Manual Gain Control, ALC and Modulation Techniques # **MRF136Y** 30 W. to 400 MHz **N-CHANNEL MOS BROADBAND RF POWER FET** ### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|------------------|--------------|---------------| | Drain-Source Voltage | V _{DSS} | 65 | Vdc | | Drain–Gate Voltage ($R_{GS} = 1.0 \text{ M}\Omega$) | V_{DGR} | 65 | Vdc | | Gate-Source Voltage | V _{GS} | ±40 | Vdc | | Drain Current — Continuous | I _D | 5.0 | Adc | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | P _D | 100
0.571 | Watts
W/°C | | Storage Temperature Range | T _{stg} | -65 to +150 | °C | | Operating Junction Temperature | TJ | 200 | °C | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--------------------------------------|-----------------|------|------| | Thermal Resistance, Junction to Case | $R_{\theta JC}$ | 1.75 | °C/W | Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. # **ELECTRICAL CHARACTERISTICS** ($T_C = 25^{\circ}C$ unless otherwise noted.) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|----------------------|--------------------------------|-----|-----|-------| | OFF CHARACTERISTICS (1) | | | | | • | | Drain–Source Breakdown Voltage $(V_{GS} = 0, I_D = 5.0 \text{ mA})$ | V _{(BR)DSS} | 65 | _ | _ | Vdc | | Zero–Gate Voltage Drain Current $(V_{DS} = 28 \text{ V}, V_{GS} = 0)$ | I _{DSS} | _ | _ | 2.0 | mAdc | | Gate–Source Leakage Current $(V_{GS} = 40 \text{ V}, V_{DS} = 0)$ | I _{GSS} | _ | _ | 1.0 | μAdc | | ON CHARACTERISTICS (1) | | | | • | | | Gate Threshold Voltage $(V_{DS} = 10 \text{ V, } I_D = 25 \text{ mA})$ | V _{GS(th)} | 1.0 | 3.0 | 6.0 | Vdc | | Forward Transconductance
(V _{DS} = 10 V, I _D = 250 mA) | 9fs | 250 | 400 | _ | mmhos | | DYNAMIC CHARACTERISTICS (1) | | | | | • | | Input Capacitance $(V_{DS} = 28 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$ | C _{iss} | _ | 24 | _ | pF | | Output Capacitance $(V_{DS} = 28 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz})$ | C _{oss} | _ | 27 | _ | pF | | Reverse Transfer Capacitance
(V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz) | C _{rss} | _ | 5.5 | _ | pF | | FUNCTIONAL CHARACTERISTICS (2) | | | | • | • | | Common Source Power Gain (Figure 1)
(V _{DD} = 28 Vdc, P _{out} = 30 W, f = 150 MHz, I _{DQ} = 100 mA) | G _{ps} | 12 | 14 | _ | dB | | Drain Efficiency (Figure 1)
(V _{DD} = 28 Vdc, P _{out} = 30 W, f = 150 MHz, I _{DQ} = 100 mA) | η | 50 | 54 | _ | % | | Electrical Ruggedness (Figure 1) $(V_{DD} = 28 \text{ Vdc}, P_{out} = 30 \text{ W}, f = 150 \text{ MHz}, I_{DQ} = 100 \text{ mA}, VSWR 30:1 at all Phase Angles)$ | Ψ | No Degradation in Output Power | | | | ## NOTES: - 1. Each side measured separately. - 2. Measured in push-pull configuration. Figure 1. 30-150 MHz Test Circuit Figure 2. Output Power versus Input Power Figure 3. Output Power versus Input Power Figure 4. Output Power versus Input Power Figure 5. Output Power versus Supply Voltage Figure 6. Output Power versus Supply Voltage Figure 7. Output Power versus Supply Voltage Figure 8. Drain Current versus Gate Voltage (Transfer Characteristics)* Figure 9. Gate-Source Voltage versus **Case Temperature*** $T_C = 25^{\circ}C$ 2 10 20 30 50 70 100 VDS, DRAIN-SOURCE VOLTAGE (VOLTS) Figure 10. Capacitance versus Drain-Source Voltage Figure 11. DC Safe Operating Area ## TYPICAL PERFORMANCE IN BROADBAND TEST CIRCUIT (Refer to Figure 1) Figure 12. Output Power versus Input Power Figure 13. Power Gain versus Frequency Figure 15. Output Power versus Gate Voltage ## **TYPICAL 400 MHz PERFORMANCE** Figure 16. Output Power versus Input Power Figure 17. Output Power versus Gate Voltage Figure 18. Input and Output Impedance Figure 19. S₁₁, Input Reflection Coefficient versus Frequency $V_{DS} = 28 \text{ V} \quad I_{D} = 0.5 \text{ A}$ versus Frequency $V_{DS} = 28 \text{ V} \quad I_{D} = 0.5 \text{ A}$ Figure 21. S₂₁, Forward Transmission Coefficient versus Frequency $V_{DS} = 28 \text{ V} \quad I_{D} = 0.5 \text{ A}$ Figure 22. S₂₂, Output Reflection Coefficient versus Frequency $V_{DS} = 28 \text{ V}$ $I_D = 0.5 \text{ A}$ #### **DESIGN CONSIDERATIONS** The MRF136Y is an RF power N-Channel enhancement mode field-effect transistor (FET) designed especially for HF and VHF power amplifier applications. M/A-COM RF MOS FETs feature planar design for optimum manufacturability. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation. #### DC RIAS The MRF136Y is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied without gate bias. A positive gate voltage causes drain current to flow (see Figure 8). RF power FETs require forward bias for optimum gain and power output. A Class AB condition with quiescent drain current (IDQ) in the 25-100 mA range is sufficient for many applications. For special requirements such as linear amplification, IDQ may have to be adjusted to optimize the critical parameters. The MOS gate is a dc open circuit. Since the gate bias circuit does not have to deliver any current to the FET, a simple resistive divider arrangement may sometimes suffice for this function. Special applications may require more elaborate gate bias systems. #### **GAIN CONTROL** Power output of the MRF136Y may be controlled from rated values down to the milliwatt region (>20 dB reduction in power output with constant input power) by varying the dc gate voltage. This feature, not available in bipolar RF power devices, facilitates the incorporation of manual gain control, AGC/ALC and modulation schemes into system designs. A full range of power output control may require dc gate voltage excursions into the negative region. #### **AMPLIFIER DESIGN** Impedance matching networks similar to those used with bipolar transistors are suitable for the MRF136Y. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. Large signal impedance parameters are provided. Large signal impedances should be used for network designs wherever possible. While the s parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is particularly useful at frequencies outside those presented in the large signal impedance plots. RF power FETs are triode devices and are therefore not unilateral. This, coupled with the very high gain, yields a device capable of self oscillation. Stability may be achieved using techniques such as drain loading, input shunt resistive loading, or feedback. S parameter stability analysis can provide useful information in the selection of loading and/or feedback to insure stable operation. The MRF136Y was characterized with a resistive feedback loop around each of its two active devices. For further discussion of RF amplifier stability and the use of two port parameters in RF amplifier design, see M/A-COM Application Note AN215A. ## LOW NOISE OPERATION Input resistive loading will degrade noise performance, and noise figure may vary significantly with gate driving impedance. A low loss input matching network with its gate impedance optimized for lowest noise is recommended. ## PACKAGE DIMENSIONS Specifications subject to change without notice. - North America: Tel. (800) 366-2266, Fax (800) 618-8883 - Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 - **Europe:** Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020 Visit www.macom.com for additional data sheets and product information. REV 0