

Single-Chip Electronic Volume Control System

Overview

The LC75394NE is an electronic volume control system providing control over volume, balance, 5-band equalizer, and input switching based on serial inputs.

Functions

• Volume control:

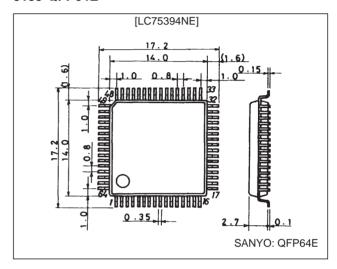
The chip provides 25 levels of volume attenuation: in 2-dB steps between 0 dB and -20 dB, 3-dB steps between -20 dB and -32 dB, 4-dB steps between -32 dB and -52 dB, 4.5-dB steps between -52 dB and -70 dB, and $-\infty$. Independent control over left and right channels provides balance control.

• Equalizer:

The chip provides control in 2-dB steps over the range between +10 dB and -10 dB. Four of the five bands have peaking equalization; the remaining one, shelving equalization.

• Selector:

The left and right channels each offer a choice of four inputs. An external constant determines the amplification for the input signal.


Features

- Built-in buffer amplifiers reduce the number of external parts necessary.
- Silicon gate CMOS reduces switching noise.
- · Serial data input
 - —Supports CCB* format communication with the system controller.
- A built-in reference voltage circuit divides the supply voltage (V_{DD}) in half.

Package Dimensions

unit: mm

3159-QFP64E

*

- CCB is a trademark of SANYO ELECTRIC CO., LTD.
- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

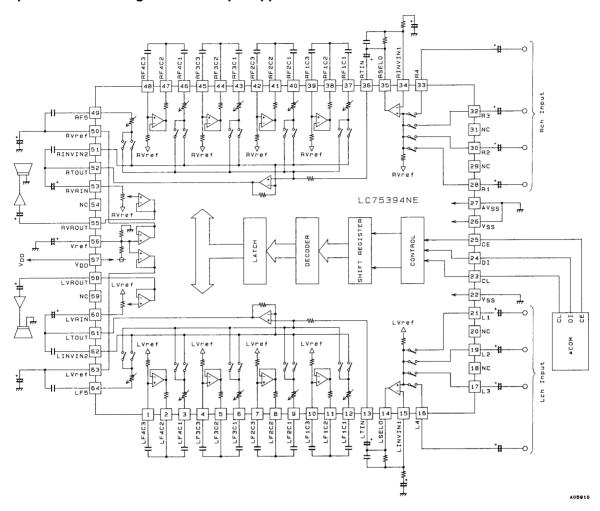
Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS} = 0~V$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V_{DD}	12	V
Maximum input voltage	V _{IN} max	CL, DI, CE, L1 to L4, R1 to R4, LTIN, RTIN, LVRIN, RVRIN	$V_{SS} - 0.3 \text{ to} $ $V_{DD} + 0.3$	V
Allowable power dissipation	Pd max	Ta ≤ 85°C	310	mW
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-40 to +125	°C

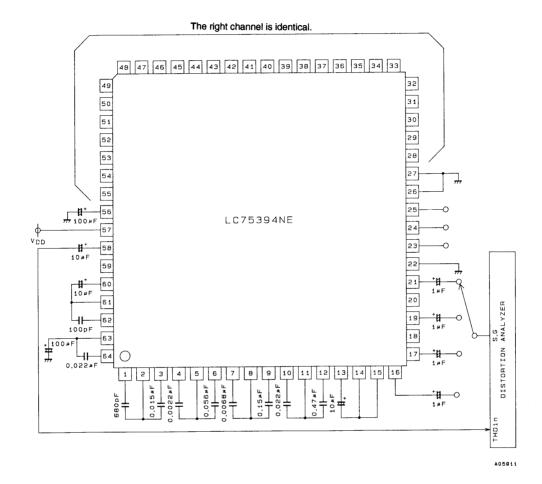
Allowable Operating Ranges at $Ta=25^{\circ}C,\,V_{SS}=0~V$

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage	V _{DD}	V _{DD}	6.0		11.0	V
Input high level voltage	V _{IH}	CL, DI, CE	4.0		V _{DD}	V
Input low level voltage	V _{IL}	CL, DI, CE	V _{SS}		1.0	V
Input voltage amplitude	V _{IN}	CL, DI, CE, L1 to L4, R1 to R4, LTIN, RTIN, LVRIN, RVRIN	V _{SS}		V _{DD}	Vp-p
Input pulse width	t _{øW}	CL	1.0			μs
Setup time	tSETUP	CL, DI, CE	1.0			μs
Hold time	tHOLD	CL, DI, CE	1.0			μs
Operating frequency	fopg	CL			500	kHz

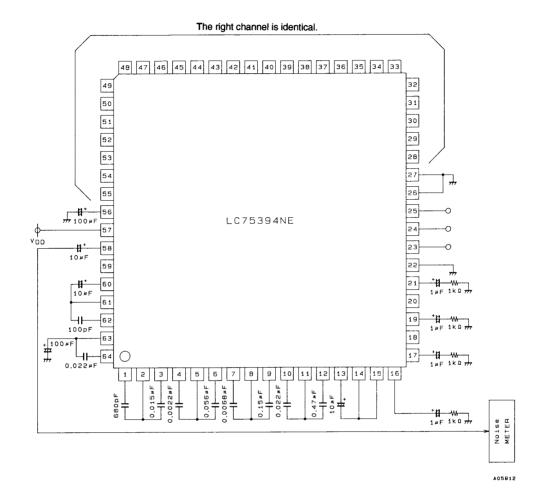

Electrical Characteristics at $Ta=25^{\circ}C,\,V_{DD}=10~V,\,V_{SS}=0~V$

Parameter	Symbol	Conditions	min	typ	max	Unit
[Input block]						
Input resistance	Rin	L1 to L4, R1 to R4		1		ΜΩ
Clipping level	Vcl	LSELO, RSELO: THD = 1.0%		2.65		Vrms
Output load resistance	R _L	LSELO, RSELO	3			kΩ
[Volume control block]						•
Input resistance	Rin	LVRIN, RVRIN	60	100	140	kΩ
[Equalizer control block]						
Control range	Geq	Max, boost/cut	±8	±10	±12	dB
Step resolution	Estep		1	2	3	dB
Internal feedback resistance	Rfeed		17	28	39	kΩ
[Overall characteristics]			•			•
Total harmonic distortion	THD (1)	V _{IN} = 1 Vrms, f = 1 kHz, with all controls flat overall		0.0033		%
Total Harmonic distortion	THD (2)	V _{IN} = 1 Vrms, f = 20 kHz, with all controls flat overall		0.012		%
Crosstalk	СТ	V_{IN} = 1 Vrms, f = 1 kHz, with all controls flat overall, Rg = 1 k Ω		86		dB
Output at maximum attenuation	V _O min	V _{IN} = 1 Vrms, f = 1 kHz, main volume -∞		-90		dB
Outrat a sissa salta as	V _N (1)	With all controls flat overall (IHF-A), Rg = 1 k Ω		3.9		μV
Output noise voltage	V _N (2)	With all controls flat overall (DIN-AUDIO), Rg = 1 k Ω		5.4		μV
Current drain	I _{DD}	V _{DD} - V _{SS} = 11 V		25	33	mA
Input high level current	I _{IH}	CL, DI, CE, V _{IN} = 11 V			10	μA
Input low level current	I _{IL}	CL, DI, CE, V _{IN} = 0 V	-10			μΑ

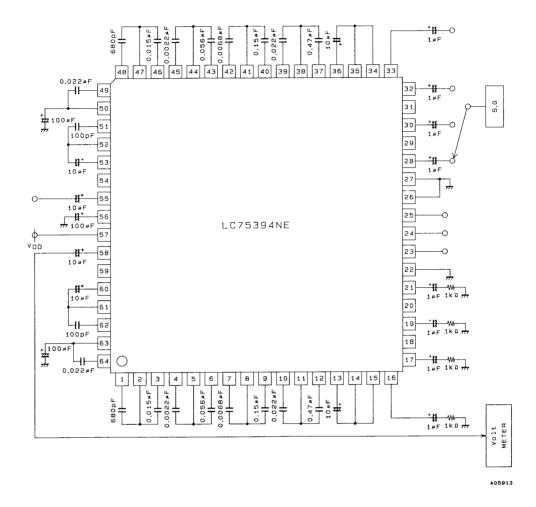
Input Amplifier Characteristics at $Ta=25^{\circ}C,\,V_{DD}-V_{SS}=10~V$

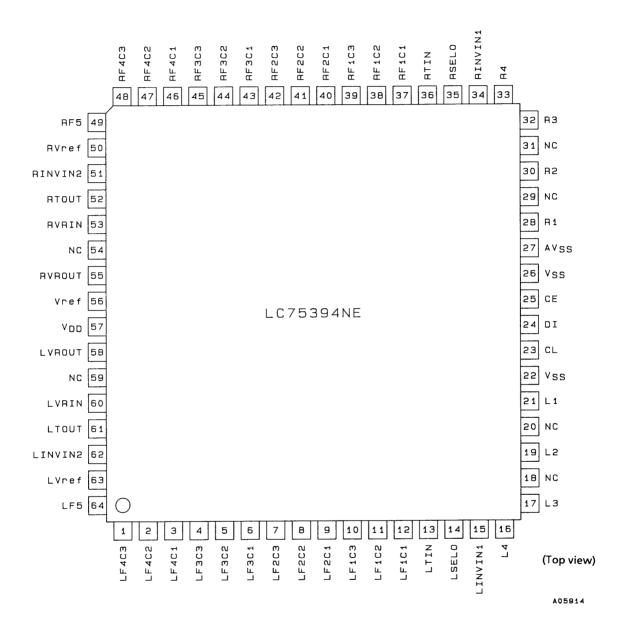

Parameter	Symbol	Conditions	min	typ	max	Unit
Input offset voltage	V _{IO}		-10		+10	mV
Input offset current	I _{IO}	$V_{SS} \le V_{IN} \le V_{DD}$		±10		nA
Open-loop voltage gain	A _O			80		dB
Width of 0 dB band	f _T			2.5		MHz
Allowable load resistance	R _L		3			kΩ

Equivalent Block Diagram and Sample Application Circuit



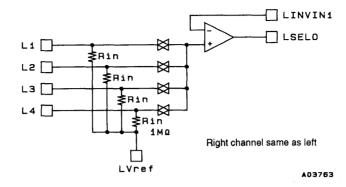
Test Circuits


1. Total Harmonic Distortion

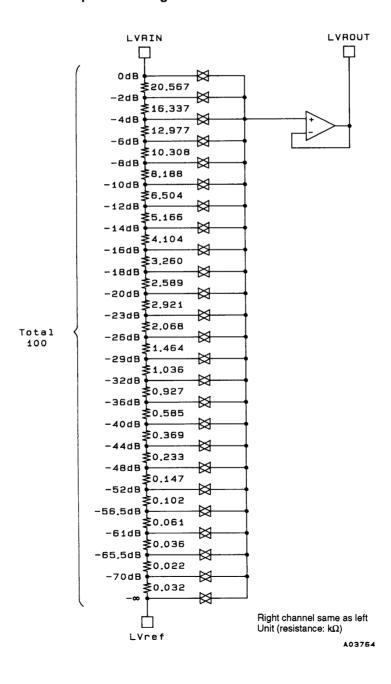

2. Output Noise Voltage

3. Crosstalk

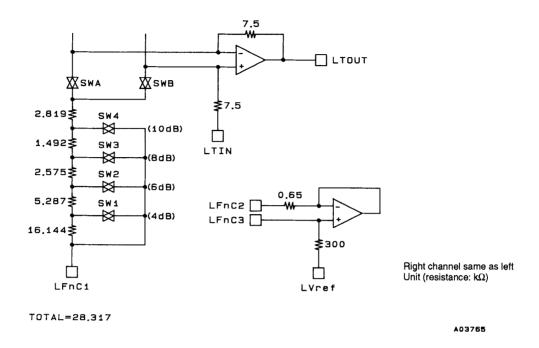
Pin Assignment


Pin Functions

Pin No.	Symbol	Function	Note
12	LF1C1		
11	LF1C2	F1 band control block for left channel. Connect to external	
10	LF1C3	capacitors.	
37	RF1C1		و∨ت و ا
38	RF1C2	F1 band control block for right channel. Connect to external	,,, † ,,,,,
39	RF1C3	capacitors.	₩ FnC1
9	LF2C1		₩ #-
8	LF2C2	F2 band control block for left channel. Connect to external	و مو∨و
7	LF2C3	capacitors.	
40	RF2C1		<u>*</u>
41	RF2C2	F2 band control block for right channel. Connect to external	/// • VDD
42	RF2C3	capacitors.	*
6	LF3C1		FnC2
5	LF3C2	F3 band control block for left channel. Connect to external	
4	LF3C3	capacitors.	 • v _{DD}
43	RF3C1		AVSS FnC3
44	RF3C2	F3 band control block for right channel. Connect to external	
45	RF3C3	capacitors.	9 V D D
3	LF4C1		
2	LF4C1	F4 band control block for left channel. Connect to external	→ Vref
1	LF4C3	capacitors.	A03750
46	RF4C1		
47	RF4C2	F4 band control block for right channel. Connect to external	
48	RF4C3	capacitors.	
13 36	LTIN RTIN	Tone control inputs. Must be driven with low-impedance circuits.	W A03751
14 35	LSELO RSELO	Input selector outputs	Vref AVSS 777
64 49	LF5 RF5	F5 band control block. Connect to external capacitors.	→ VDD → → → → → → → → → → → → → → → → →
21	L1		
19	L2		وم م
17	L3		***************************************
16	L4	Cianal insute	
28	R1	Signal inputs	
30	R2		AVSS INVINI
32	R3		A03754
33	R4		
57	V_{DD}	Power supply connection	
22, 26	V _{SS}	Grounds for internal logic	
27	AV _{SS}	Ground for internal operational amplifier	
-1	55	S. Sand for internal operational ampline	

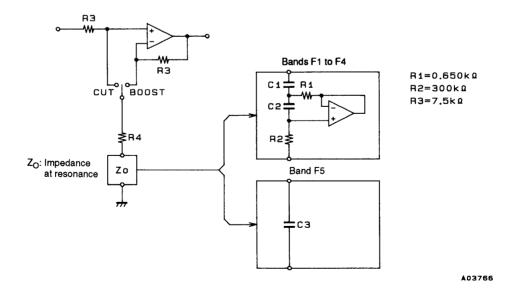

Continued from preceding page.

Pin No.	Symbol	Function	Note
	,		0 ما√
56	Vref	$\rm V_{DD}\!/2$ voltage generator block. Connect capacitors between Vref and $\rm V_{SS}$ to minimize the effects of power supply ripple.	Vrefo OAVSS 777 A03755
63 50	LVref RVref	Pins common to volume control, tone control, and input selection blocks. Select the capacitors between these pins and V_{SS} carefully as they contribute residual resistance when the volume is turned down. The voltage must never exceed V_{DD} .	VRIN VDD VROUT VPOUT VPO
15 34	LINVIN1 RINVIN1	Operational amplifier inverted input for specifying input gain.	AVSS A03757
62 51	LINVIN2 RINVIN2	Operational amplifier inverted input for specifying graphic equalization. Connecting a capacitor across INVIN2 and TOUT permits the removal of unwanted bands and reduces the risk of oscillation.	AVSS A03756
61 52	LTOUT RTOUT	Tone control output	A03759
60 53	LVRIN RVRIN	Volume control input. Must be driven with low-impedance circuits.	→ VDD A03760
58 55	LVROUT RVROUT	Volume control output	A03761
25	CE	Chip enable pin. The chip uses falling edge timing to write data to the internal latch and shift analog switches. The high level enables data transfer.	Z Z
24	DI		A03762
23	CL	Serial data and clock input used for control	
18	NC		
20	NC NC		
29	NC		
31	NC	Leave unconnected	
54	NC		
59	NC		
1	1	l .	No. 5466-9/17


Input Block Internal Equivalent Circuit Diagram

Volume Control Block Internal Equivalent Diagram

Equalizer Control Block Internal Equivalent Circuit (Bands F1 to F4)



Calculating the Size of External Capacitors

The LC75394NE supports four bands with peaking characteristics and one band with shelving characteristics

- 1. Peaking Characteristics (bands F1 to F4)

 The external capacitor functions as the structural element of a simulated inductor. The equivalent circuit and the calculations required to achieve the desired center frequency are shown below.
 - Equivalent circuit for the simulated inductor

• Calculation example

Specifications: Central frequency, $F_O = 107 \text{ Hz}$

Q factor at maximum boost, $Q_{+10 \text{ dB}} = 0.8$

— Calculate Q_O, the sharpness of the simulated inductance itself.

$$Q_O = (R1 + R4)/R1 \times Q_{+10dB}$$

Note: R4 is from the separately issued internal block diagram.

$$\neq 4.270$$

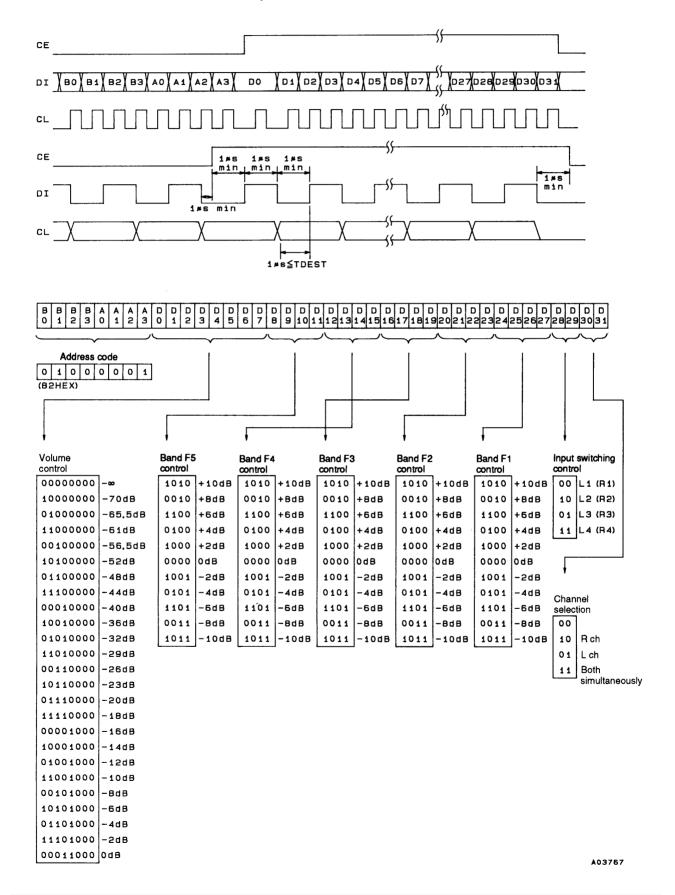
— Calculate C1

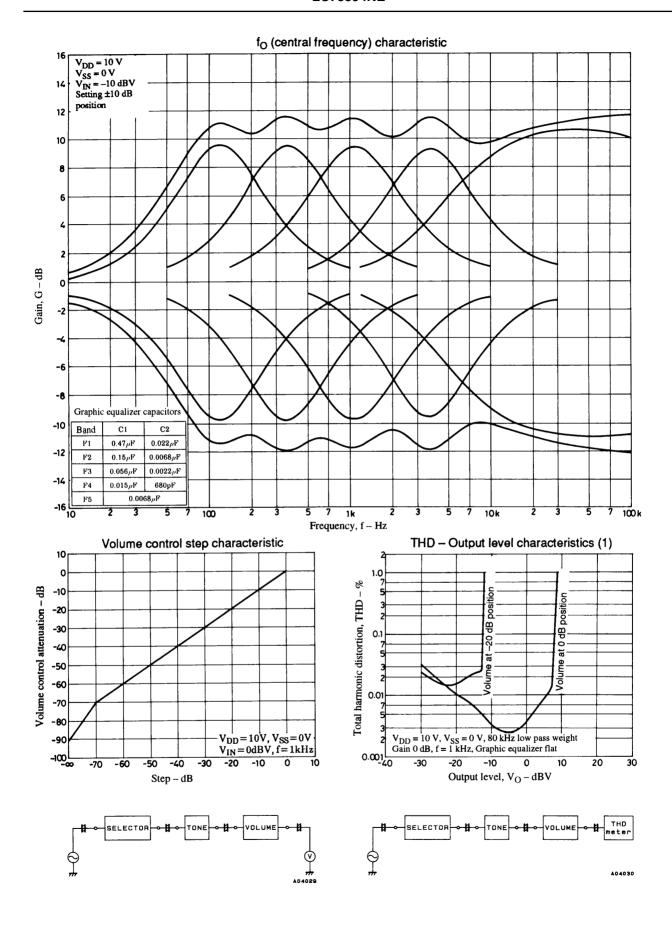
$$C1 = 1/2\pi F_{O}R1Q_{O} \neq 0.536 (\mu F)$$

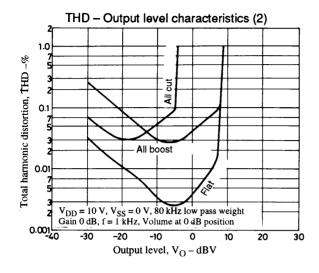
— Calculate C2

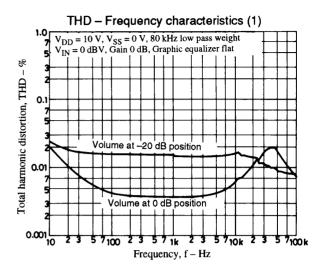
$$C2 = Q_0/2\pi F_0 R2 \neq 0.021 (\mu F)$$

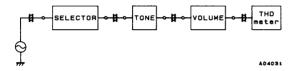
• Sample results

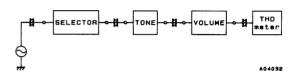

Central frequency F _O (Hz)	C1 (F)	C2 (F)
107	0.536 μ	0.021 μ
340	0.169 μ	6663 _P
1070	0.054 μ	2117 _P
3400	0.017 μ	666 _P

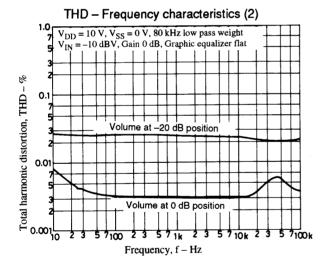

• Shelving characteristics (Band F5)

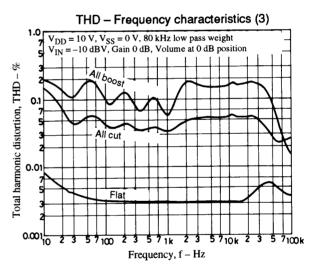

Achieving the desired control of 2-dB steps over the range between +10 dB to -10 dB requires choosing a capacitor, C3, with an impedance of 650 Ω .

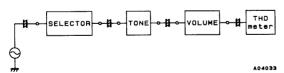

Control System Timing and Data Formats

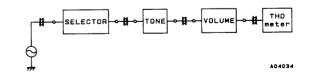

The LC75394NE receives its control sequences via a serial interface comprised of pins CE, CL, and DI. Each sequence consists of 40 bits: an 8-bit address followed by 32 bits of data.

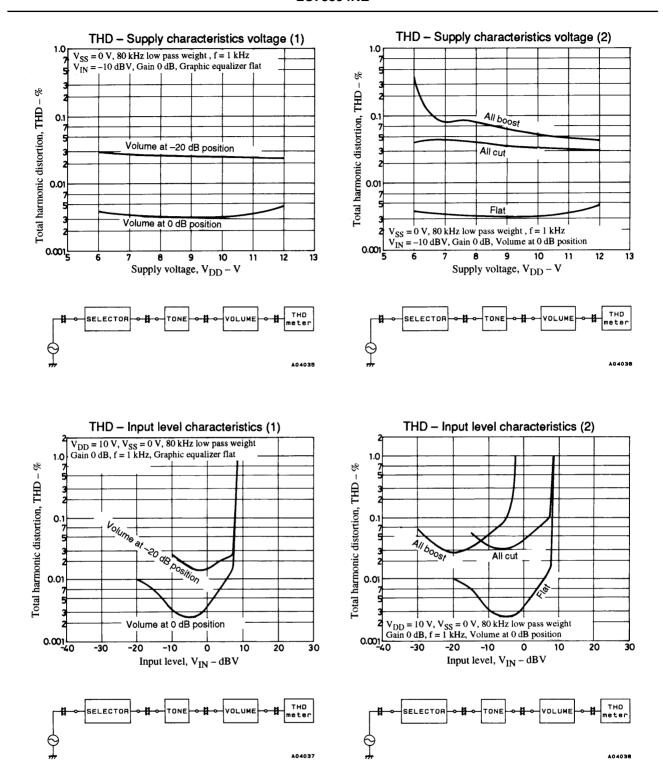












Usage Notes

- 1. When the power is first applied, the internal analog switches are in indeterminate states. The chip therefore requires muting or other external measures until it has received the proper data.
- 2. Provide grounding patterns or shielding for the lines to the CL, DI, and CE pins so as to prevent their high-frequency data signals from interfering with the operation of nearby analog circuits.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 1996. Specifications and information herein are subject to change without notice.