

MOS INTEGRATED CIRCUIT $\mu PD16432B$

1/8, 1/15 DUTY LCD CONTROLLER/DRIVER

DESCRIPTION

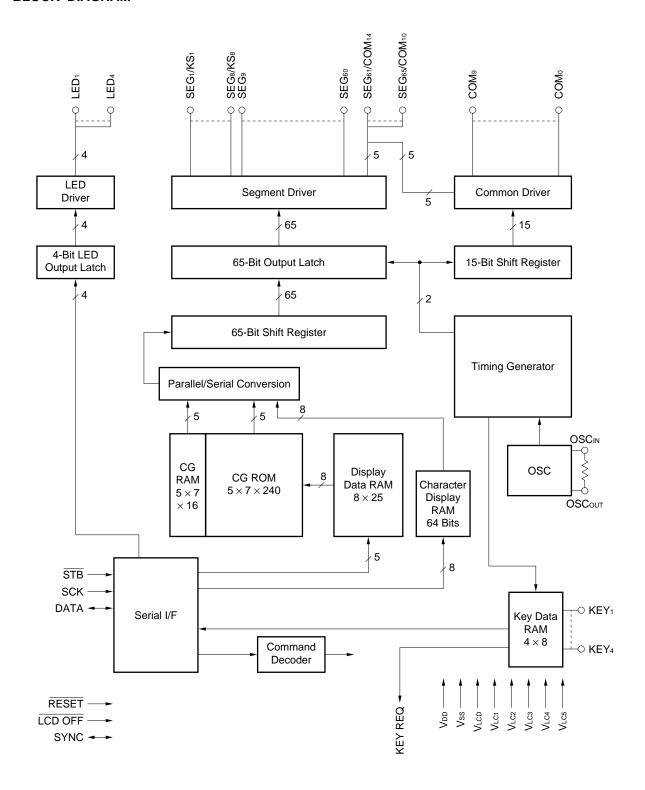
The μ PD16432B is a controller/driver with 1/8 and 1/15 duty dot matrix LCD display capability. It has 60 segment outputs, 10 common outputs, and 5 dual segment/common outputs, giving a maximum display capability of 12 columns \times 2 lines (at 1/15 duty).

LED drive outputs, key scanning key source outputs, and key data inputs are also provided, making it ideal for use in a car stereo front panel, etc.

FEATURES

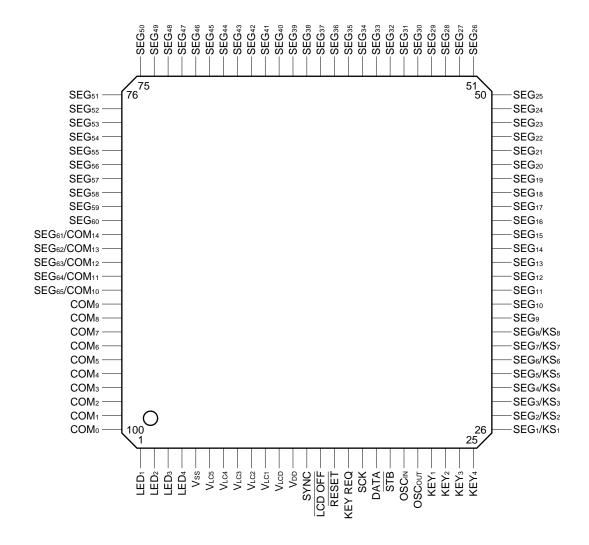
- Dot matrix LCD controller/driver
- Pictograph display segment drive capability (max. 64)
- LCD driver unit power supply VLCD independently settable (Max. 10 V)
- On-chip key scan circuit (8 × 4 matrix)
- Alphanumeric character and symbol display capability provided by on-chip ROM (5 × 7 dots)
 240 characters + 16 user-defined characters
- · Display contents

1/8 duty: 13 columns \times 1 line, 64 pictograph displays, 4 LEDs 1/15 duty: 12 columns \times 2 lines, 60 pictograph displays, 4 LEDs


- Serial data input/output (SCK, STB, DATA)
- · On-chip oscillator
- · Reduced power consumption possible using standby mode

ORDERING INFORMATION

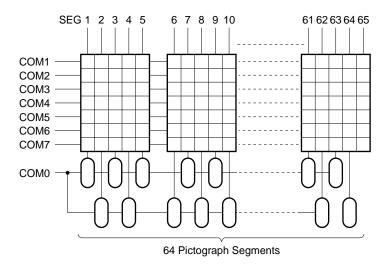
Part Number	Package
μPD16432BGC-001-9EU	100-pin plastic QFP (0.5 pitch, 14 × 14), Standard ROM code

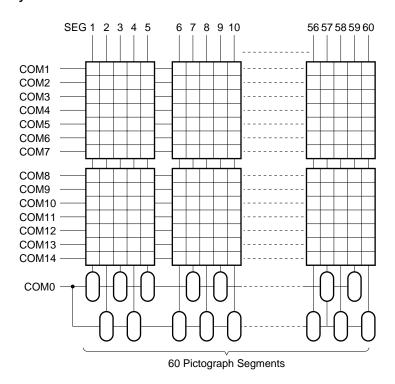


BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTIONS


Pin Symbol	Pin Name	Pin No.	Function
SEG ₁ /KS ₁ to SEG ₈ /KS ₈	Segment output/key source output dual-function pins	26 to 33	Pins with dual function as dot matrix LCD segment outputs and key scanning key source outputs
SEG ₉ to SEG ₆₀	Segment outputs	34 to 85	Dot matrix LCD segment outputs
SEG ₆₁ /COM ₁₄ to SEG ₈₅ /COM ₁₀	Segment output/common output dual-function pins	86 to 90	Switchable to either dot matrix LCD segment outputs or common outputs
COMo to COMo	Common outputs	91 to 100	Dot matrix LCD common outputs
LED ₁ to LED ₄	LED output pins	1 to 4	LED outputs are Nch open-drain.
SCK	Shift clock input	17	Data shift clock Data is read on rising edge, and output on falling edge.
DATA	Data input/output	18	Performs input of commands, key data, etc., and key data output. Input is performed from the MSB on the rise of the shift clock, and the first 8 bits are recognized as a command. Output is performed from the MSB on the fall of the shift clock. Output is Nch open-drain.
STB	Strobe input	19	Data input is enabled when "H". Command processing is performed on a fall.
KEY REQ	Key request output	16	"H" if there is key data, "L" if there is none. Key data can be read irrespective of the state of this pin. Output is CMOS output.
RESET	Reset input	15	Initial state is set when "L".
LCD OFF	LCD off input	14	When "L", a forced LCD off operation is performed, and SEGn & COMn output the unselected waveform.
SYNC	Synchro	13	Synchronization signal input/output pin. When 2 or more chips are used, wired-OR connection is made to each chip. A pull-up resistor is also required when one chip is used.
OSCIN	Oscillation pins	20	Connect oscillator resistor.
ОЅСоит		21	
KEY ₁ to KEY ₄	Key data inputs	22 to 25	Key scanning key data inputs.
V _{DD}	Logic power supply pin	12	Internal logic power supply pin
Vss	GND pin	5	GND pin
VLCD	LCD drive voltage pin	11	LCD drive power supply pin
VLC1 to VLC5	LCD drive power supply	10 to 6	Dot matrix LCD drive power supply


LCD DISPLAY

In the μ PD16432B LCD display, a 5 \times 7-segment display and pictograph display segments can be driven. The pictograph display segment common output is allocated to COM₀, and up to 64 can be driven.

(1) Example of 1/8 duty connections

(2) Example of 1/15 duty connections

CHARACTER CODES AND CHARACTER PATTERNS

The relation between character codes and character patterns is shown below. Character codes 00H to 0FH are allocated to CGRAM.

Character codes 10H to 1FH and E0H to FFH are undefined.

Higher Bits Lower Bits	0XH	1XH	2XH	3ХН	4XH	5XH	6XH	7XH	8XH	AXH	вхн	СХН	DXH	EXH	FXH
X0HRAM	CG (1)														
X1HRAM	CG (2)														
X2HRAM	CG (3)														
X3HRAM	CG (4)														
X4HRAM	CG (5)														
X5HRAM	CG (6)														
X6HRAM	CG (7)														
X7HRAM	CG (8)														
X8HRAM	CG (9)														
X9HRAM	CG (10)														
XAHRAM	CG (11)														
XBHRAM	CG (12)														
XCHRAM	CG (13)														
XDHRAM	CG (14)														
XEHRAM	CG (15)														
XFHRAM	CG (16)														

DISPLAY RAM ADDRESSES

Display RAM addresses are allocated as shown below irrespective of the display mode.

Column No.	1	2	3	4	5	6	7	8	9	10	11	12	13
Line 1													
Line 2	0DH	0EH	0FH	10H	11H	12H	13H	14H	15H	16H	17H	18H	

PICTOGRAPH DISPLAY RAM ADDRESSES

Pictograph display RAM addresses are allocated as shown below.

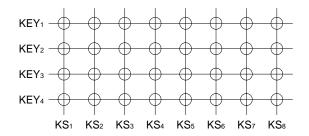
A dalar a			Seg	ment (Output	No.		
Address	b7	b7 b6		b4	b3	b2	b1	b0
00H	1	2	3	4	5	6	7	8
01H	9	10	11	12	13	14	15	16
02H	17	18	19	20	21	22	23	24
03H	25	26	27	28	29	30	31	32
04H	33	34	35	36	37	38	39	40
05H	41	42	43	44	45	46	47	48
06H	49	50	51	52	53	54	55	56
07H	57	58	59	60	61	62	63	64

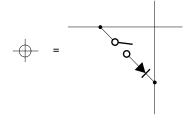
Note When 1/15 duty is used (12 columns \times 2 lines), 61 to 64 are disabled.

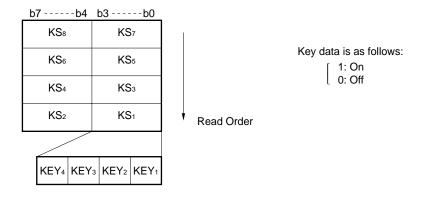
CGRAM COLUMN ADDRESSES

A maximum of any sixteen 5×7 -dot characters can be written in CGRAM. The row address within one character is allocated as shown below, and is specified by bits b7 to b5.

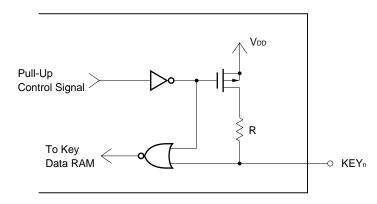
The character code for which a write is to be performed must be specified beforehand with an address setting command.


Row		Dot Data										
Address	b7	b6	b5	b4	b3	b2	b1	b0				
00H	0	0	0	*	*	*	*	,				
01H	0	0	1	*	*	*	*	*				
02H	0	1	0	*	*	*	*	*				
03H	0	1	1	*	*	*	*	*				
04H	1	0	0	*	*	*	*	*				
05H	1	0	1	*	*	*	*	*				
06H	1	1	0	*	*	*	*	*				
	Row Address Font Data											
					(5	×7 Do	ots)					


* Font data (1: on, 0: off)


KEY MATRIX AND KEY DATA RAM CONFIGURATION

The key matrix has an 8×4 configuration, as shown below.



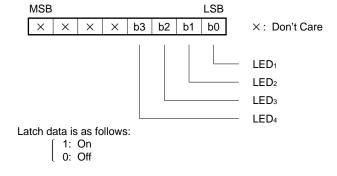
Key data is stored as shown below, and is read in MSB-first order by a read command.

Key Input Equivalent Circuit

 In the event of key source output, the pull-up control signal becomes "H", and the pull-up transistor is turned on.

KEY REQUEST (KEY REQ)

A key request is output as shown below according to the state.


State	KEY REQ ^{Note}	Key Scan Internal Pull-Up Resistor
In key scan operation	High level is output while any key data is "1". Note	During key scan: ON During display: OFF
In standby mode or when SEGn & COMn are fixed at VLcs	High level is output in case of key input only.	Always ON
When key scanning is stopped	Fixed at low level	Always OFF

Note KEY REQ does not become low until the key data is all "0".

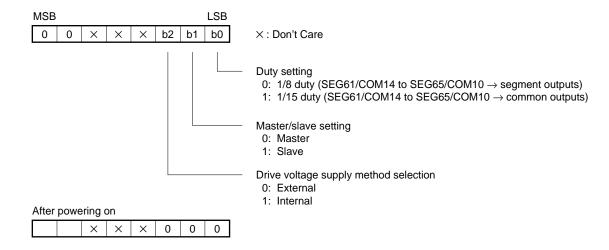
(It is not synchronized with the key data reads.)

LED OUTPUT LATCH CONFIGURATION

The low-order 4 bits of the LED output latch are enabled, and the high-order 4 bits disabled, as shown below.

COMMANDS

Commands set the display mode and status.

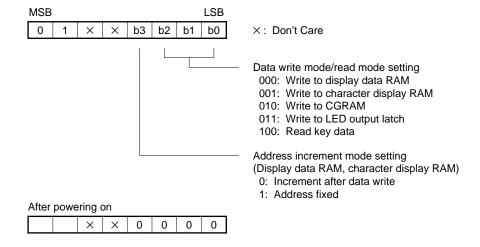

The first byte after a rise edge on the STB pin is regarded as a command.

If STB is driven low during command/data transfer, serial communication is initialized and the command/data being transferred is invalidated. (However, a command or data that has already been transferred is valid.)

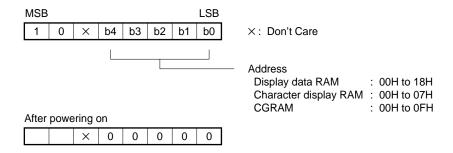
(1) Display Setting Command

This command initializes the μ PD16432B^{Note}, and sets the duty, number of segments, number of commons, master/slave operation, and the drive voltage supply method.

The state set when this command is executed is: LCD off, LED on, key scanning stopped. To restart the display, it is necessary to execute "status command" normal operation. However, nothing is done if the same mode is selected.



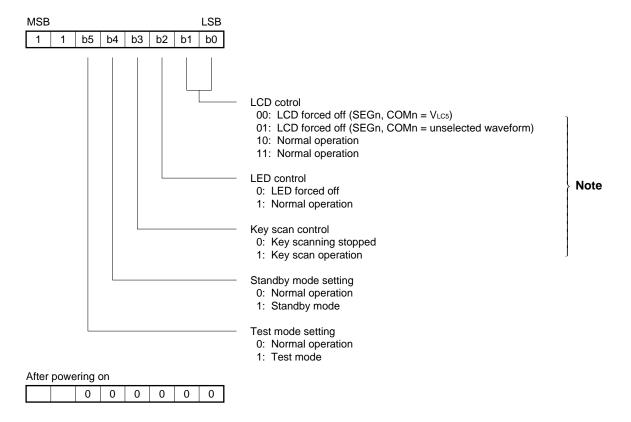
Note When multiple chips are used, only the chip that sent the command is enabled. If initialization is performed during display, the display may be affected (especially when multiple chips are used).


(2) Data Setting Command

Sets the data write mode, read mode, and address increment mode.

(3) Address Setting Command

Sets the display data RAM or character display RAM address.



Note If an unspecified address is set, data cannot be written until a correct address is next set. The address is not incremented even in increment mode.

(4) Status Command

Controls the status of the μ PD16432.

Note The following states are use prohibited modes, and key scanning does not operate if these states are set.

	0	0	1	0	0	0
	0	0	1	1	0	0

STANDBY MODE

If standby mode is selected with bit b4 of the status command, the following state is set irrespective of bits b3 to b0 of the status command.

- (1) LCD forced off (SEGn, COMn = VLC5)
- (2) LED forced off
- (3) Key scanning stopped (but KEYn = key input wait)
- (4) OSC stopped

There are two ways of releasing standby mode, as follows:

(1) Using Status Command

Select normal operation with bit b4 of the status command.

Example of Use of Status Command

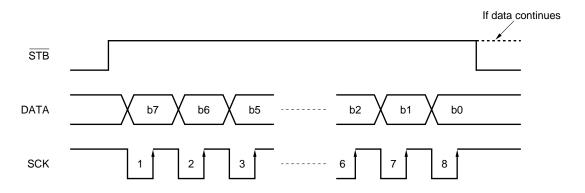
lteres	CTD			Co	omma	nd/Da	ata			Description
Item	STB	b7	b6	b5	b4	b3	b2	b1	b0	Description
Standby mode	L									
Status command	н	1	1	0	0	0	0	0	0	Standby release (OSC oscillation start), LCD control off (SEGn, COMn = VLC5), LED forced off, key scanning stopped
Standby transition time	L									10 μs ^{Note}
Status command	Н	1	1	0	0	1	1	1	0	Normal operation
End	L									

Note If LCD normal operation or key scan operation is initiated within the standby transition time, the LCD may flicker.

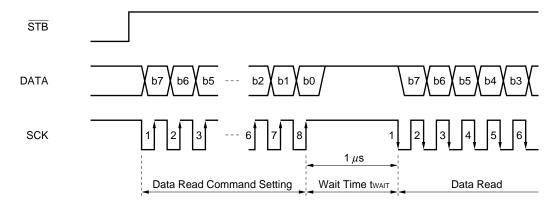
(2) Using KEYn

If any key is set to the ON state, the standby mode is released and OSC oscillation starts. Also, KEY REQ is set to "H", informing the microcomputer that a key has been pressed and standby mode has been released. In this state, the key data is not memorized, and therefore it is necessary to set key scanning to the normal state after the standby transition time, and fetch the key data.

Example of Use of KEYn


li	OTD			Co	omma	nd/Da	ata			Description		
Item	STB	b7	b6	b5	b4	b3	b2	b1	b0	Description		
Standby mode	L											
Key data present	L									Standby release (KEY REQ = H, OSC oscillation start)		
Standby transition time	L									10 μs ^{Note}		
Status command	Н	1	1	0	0	1	0	0	1	LCD forced off (unselected waveform), LED forced off, key scan operation		
Key scan	L									1 frame or more		
Data setting command	Н	0	1	0	0	0	1	0	0	Key data read, address increment		
Key data	Н	*	*	*	*	*	*	*	*	For KS ₈ , KS ₇		
Key data	Н	*	*	*	*	*	*	*	*	For KS6, KS5		
Key data	Н	*	*	*	*	*	*	*	*	For KS ₄ , KS ₃		
Key data	Н	*	*	*	*	*	*	*	*	For KS ₂ , KS ₁		
End	L									Key distinction		

Note If LCD normal operation or key scan operation is initiated within the standby transition time, the LCD may flicker.



SERIAL COMMUNICATION FORMATS

(1) Reception (Command/Data Write)

(2) Transmission (Command/Data Read)

Caution As the DATA pin is an Nch open-drain output, a pull-up resistor must be connected externally. (1 k Ω to 10 k Ω)

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, V_{SS} = 0 V)

Parameter	Symbol	Rating	Unit
Logic supply voltage	V _{DD}	-0.3 to +7.0	V
Logic input voltage	Vin	-0.3 to +Vpp + 0.3	V
Logic output voltage (Dout, LED)	Vouт	-0.3 to +7.0	V
LCD drive supply voltage	VLCD	-0.3 to +12.0	V
LCD drive power supply input voltage	VLC1 to VLC5	-0.3 to +VLCD + 0.3	V
Driver output voltage (Segment, Common)	Vout2	-0.3 to +VLCD + 0.3	V
LED drive current	lol1	20	mA
Package allowable dissipation	Рт	1000	mW
Operating ambient temperature	TA	-40 to +85	°C
Storage temperature range	Tstg	-55 to +150	°C

RECOMMENDED OPERATING RANGES

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Logic supply voltage	V _{DD}	2.7	5.0	5.5	V
LCD drive supply voltage	VLCD	V _{DD}	8.0	10.0	V
Logic input voltage	Vin	0		V _{DD}	V
Driver input voltage	VLCD1 to VLCD5	0		VLCD	V
LED drive current	lol1			15	mA

ELECTRICAL SPECIFICATIONS (UNLESS SPECIFIED OTHERWISE, $T_A = -40$ to +85°C, $V_{DD} = 5$ V ± 10 %, $V_{LCD} = 8$ V ± 10 %)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	VIH		0.7 V _{DD}		V _{DD}	V
Low-level input voltage	VIL		0		0.3 V _{DD}	V
High-level input current	Іін	SCK, STB, LCDOFF, RESET, KEY1 to KEY4			1	μΑ
Low-level input current	IIL	SCK, STB, LCDOFF, RESET, KEY1 to KEY4			-1	μΑ
Low-level output voltage	Vol1	LED ₁ to LED ₄ , IoL ₁ = 15 mA			1.0	V
High-level output voltage	V _{OH2}	OSCOUT, KEY REQ, IOH2 = -1 mA	0.9 V _{DD}			V
Low-level output voltage	V _{OL2}	DATA, OSCout, SYNC, lol2 = 4 mA			0.1 V _{DD}	V
High-level leak current	ILOH2	DATA, SYNC, VINOUT = VDD			1	μΑ
Low-level leak current	ILOL2	DATA, SYNC, VIN/OUT = Vss			-1	μΑ
Common output ON- resistance	Rcom	VLCD to VLC5 $ ightarrow$ COMo to COM14, Io = 100 μ A			2.4	kΩ
Segment output ON- resistance	Rseg	VLCD to VLC5 $ ightarrow$ SEG1 to SEG60, Io = 100 μ A			4.0	kΩ
Current consumption (Logic)	I _{DD1}	Normal operation ^{Note} , V _I = V _{DD} or V _{SS} , fosc = 250 kHz			500	μΑ
	I _{DD2}	Standby mode, V _I = V _{DD} or V _{SS} , fosc stopped			5	μΑ
Current consumption	ILCD1	Normal operation, internal bias selected, no load			1 000	μΑ
(Driver)	ILCD2	Standby mode, internal bias used, no load			5	μΑ

Note Normal operation: $V_{DD} = 5 \text{ V}$, $V_{LCD} = 8 \text{ V}$

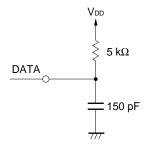
Remarks TYP. values are reference values for $T_A = 25$ °C.

SWITCHING SPECIFICATIONS (UNLESS SPECIFIED OTHERWISE, TA = -40 to +85°C, VDD = VLCD = 5 V \pm 10%, RL = 5 k Ω , CL = 150 pF)

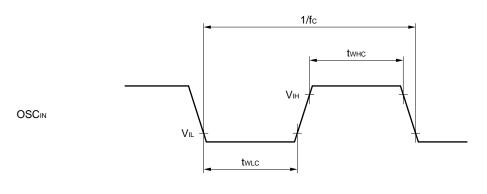
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Oscillator frequency	fosc	R = 100 kΩ	175	250	325	kHz
Output data delay time	t PZL	$SCK \downarrow \to DATA \downarrow$			100	ns
Output data delay time	t PLZ	$SCK \downarrow \rightarrow DATA \uparrow$			300	ns
SYNC delay time	tosync				1.5	μs

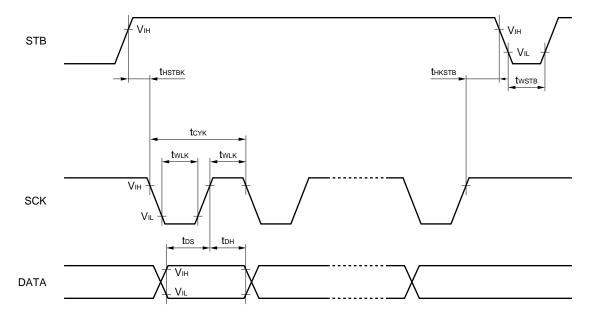
Note The time for one frame is found as follows.

1 frame = $1/\text{fosc} \times 128 \text{ clocks} \times \text{duty number} + 1/\text{fosc} \times 64 \text{ clocks}$

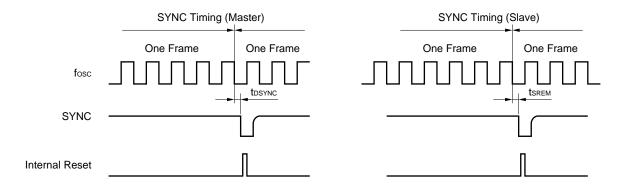

If fosc = 250 kHz and duty = 1/15, 1 frame = 4 μ s \times 128 \times 15 + 4 μ s \times 64 = 7.94 ms

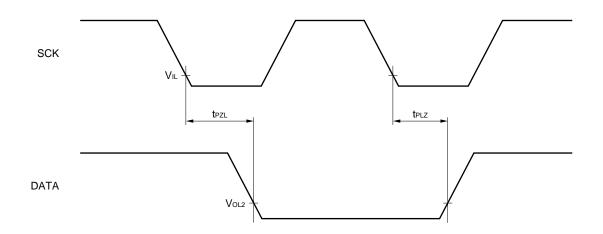
REQUIRED TIMING CONDITIONS (UNLESS SPECIFIED OTHERWISE, TA = -40 to +85°C, VDD = 5 V \pm 10%, VLCD = 8 V \pm 10%, RL = 5 k Ω , CL = 150 pF)

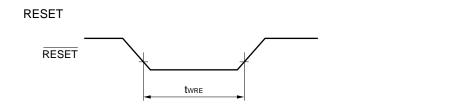

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Clock frequency	fosc	OSC _{IN} external clock	100		500	kHz
High-level clock pulse width	twnc	OSC _{IN} external clock	1		5	μs
Low-level clock pulse width	twLc	OSC _{IN} external clock	1		5	μs
Shift-clock cycle	t cyk	SCK	900			ns
High-level shift clock pulse width	twnĸ	SCK	400			ns
Low-level shift clock pulse width	twlk	sck	400			ns
Shift clock hold time	tнsтвк	$STB \uparrow \to SCK \downarrow$	1.5			μs
Data setup time	tos	DATA → SCK ↑	100			ns
Data hold time	tон	SCK ↑ → DATA	200			ns
STB hold time	tнкsтв	$SCK \uparrow \rightarrow STB \downarrow$	1			μs
STB hold time	twsтв		1			μs
Wait time	twait	8th SCK $\uparrow \rightarrow$ 9th SCK \downarrow , in data read	1			μs
SYNC removal time	t srem		250			ns
Standby transition time	tрsтв		10			μs
Reset pulse width	twrs	RESET	0.1			μs
Power-ON reset time	tpon	From Power-ON	4			CLK



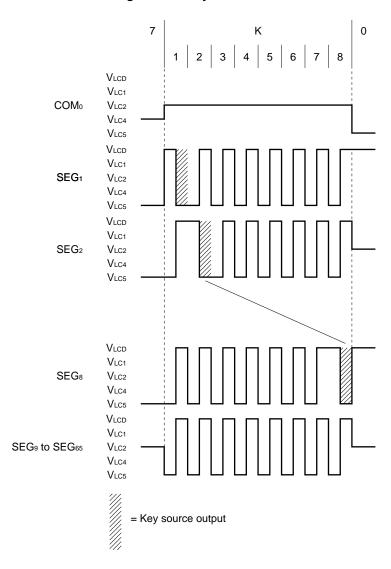
OUTPUT LOAD CIRCUIT


SWITCHING SPECIFICATION WAVEFORM DIAGRAMS



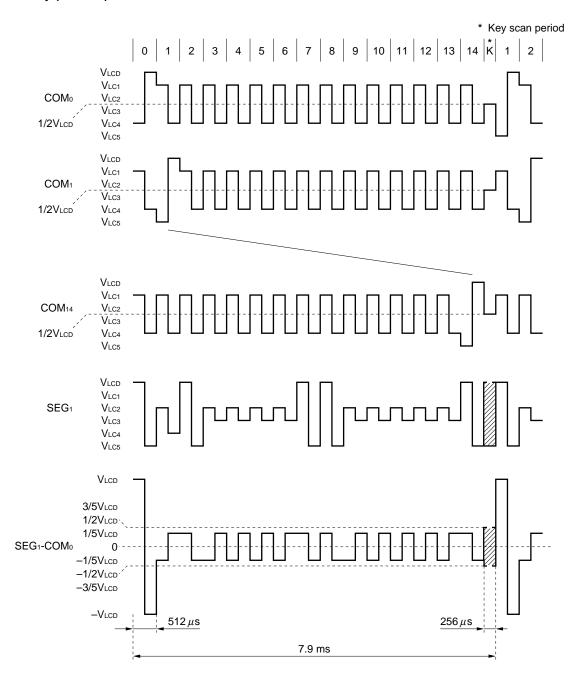


SWITCHING SPECIFICATION WAVEFORM DIAGRAMS

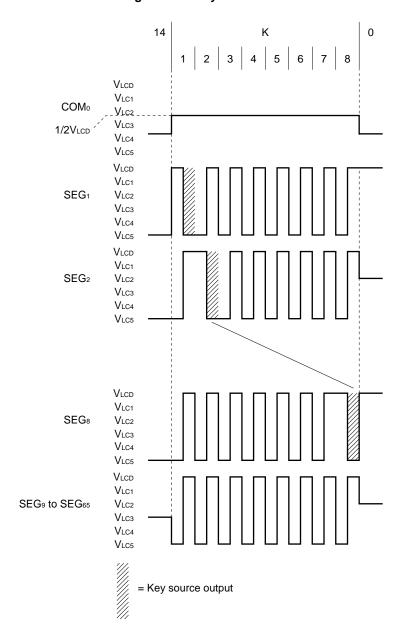


OUTPUT WAVEFORMS

(1) 1/8 Duty (1/4 Bias: VLC2: VLC3)

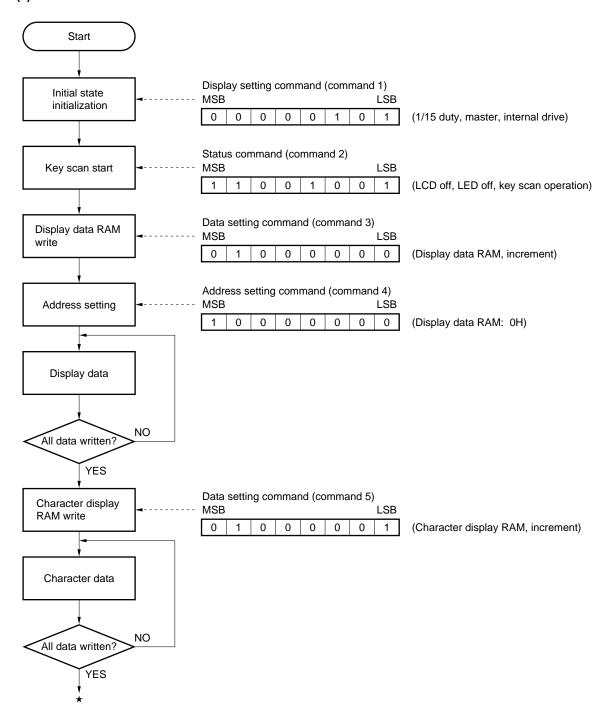

* Key scan period V_{LCD} V_{LC1} COM₀ $V_{\text{LC2}} \\$ V_{LC4} V_{LC5} V_{LCD} V_{LC1} COM_1 $V_{\text{LC2}} \\$ V_{LC4} V_{LC5} VLCD V_{LC1} COM₇ V_{LC2} V_{LC4} V_{LC5} V_{LCD} V_{LC1} SEG₁ V_{LC2} V_{LC4} V_{LC5} V_{LCD} V_{LC1} SEG_2 V_{LC2} V_{LC4} V_{LC5} VLCD 3/4VLCD SEG1-COM0 2/4VLCD 1/4VLCD 0 -1/4VLCD -2/4VLCD -3/4VLCD $-V_{\text{LCD}}$ VLCD 3/4VLCD SEG1-COM1 2/4VLCD 1/4VLCD 0 -1/4VLCD -2/4VLCD -3/4VLCD $-V_{\text{LCD}}$ $512 \,\mu \mathrm{s}$ $256\,\mu \mathrm{s}$ 4.4 ms

Enlargement of Key Scan Period

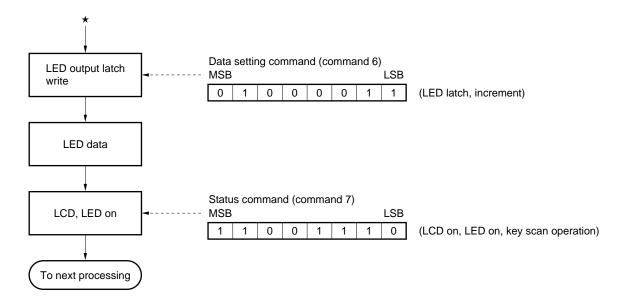


(2) 1/15 Duty (1/5 Bias)

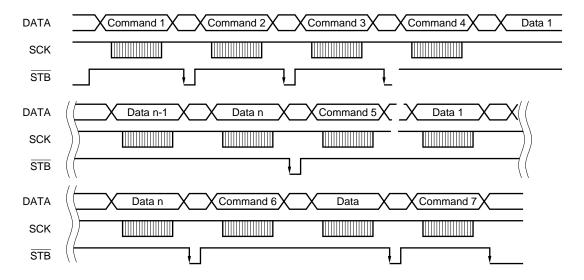
Enlargement of Key Scan Period

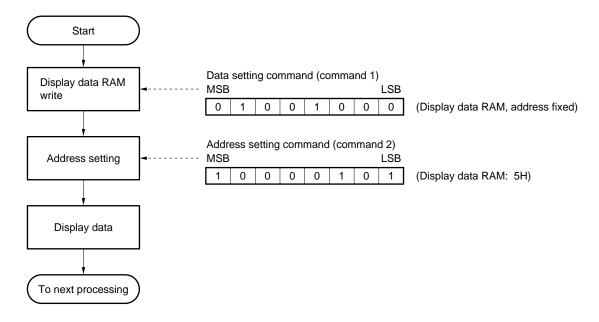


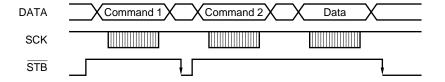
ACCESS PROCEDURES


Access procedures are illustrated below by means of flowcharts and timing charts.

1. Initialization

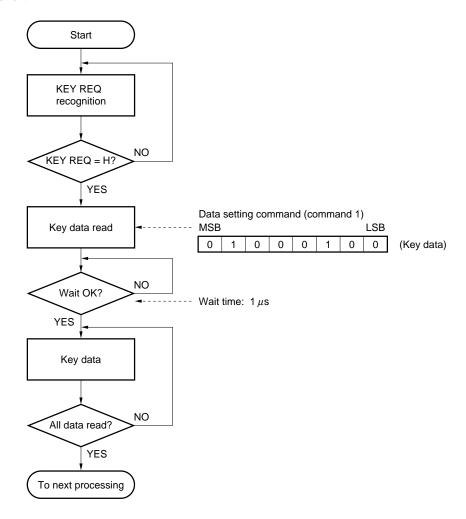

(1) Flowchart

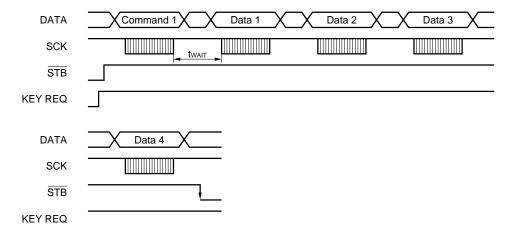

(2) Timing chart



2. Display Data Rewrite (Address Setting)

(1) Flowchart

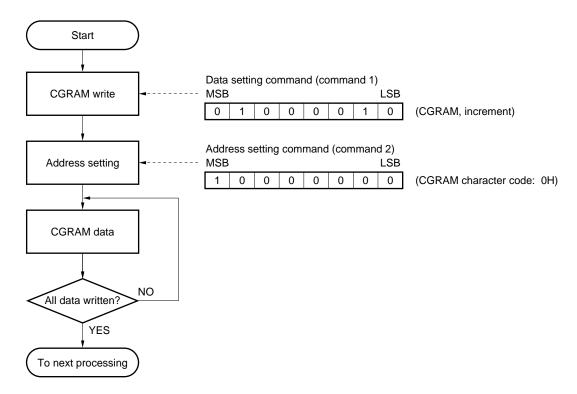

(2) Timing chart



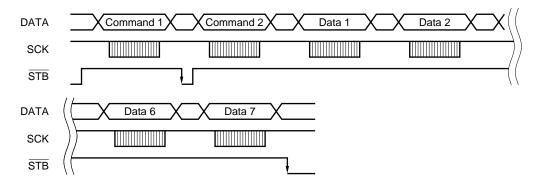
3. Key Data Read

(1) Flowchart

(2) Timing chart

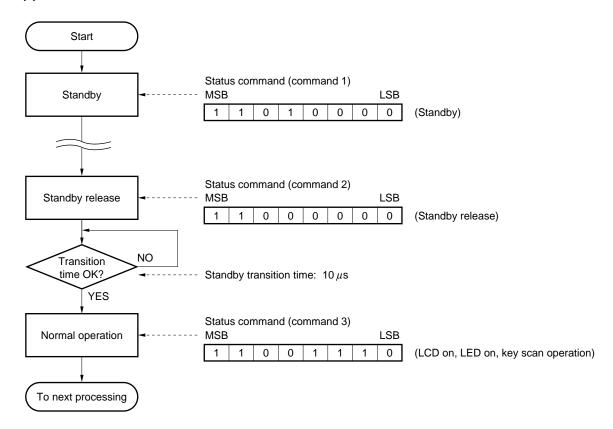

Cautions 1. Wait time twait (1 μ s) is necessary from the rise of the 8th shift clock of command 1 until the fall of the 1st shift clock of data 1.

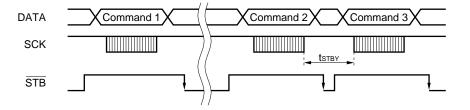
2. KEY REQ does not become low until the key data is all "0". (It is not synchronized with the key data reads.)



4. CGRAM Write

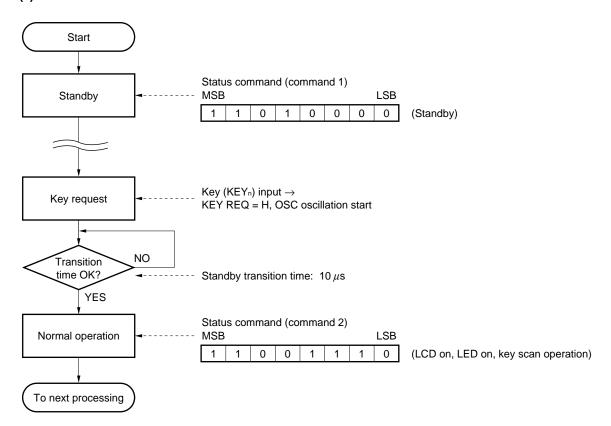
(1) Flowchart

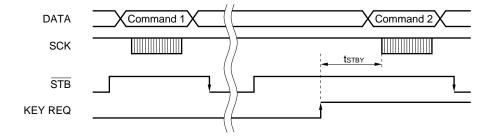

(2) Timing chart



5. Standby (Released by Status Command)

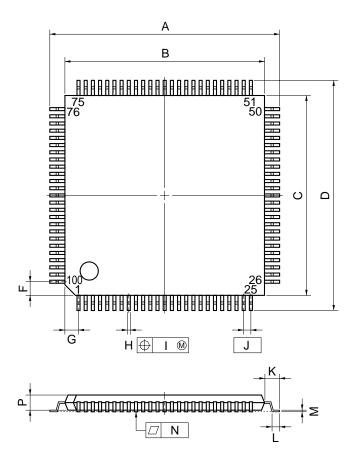
(1) Flowchart


(2) Timing chart



6. Standby (Released by KEYN)

(1) Flowchart


(2) Timing chart

PACKAGE INFORMATION (UNIT: mm)

100 PIN PLASTIC TQFP (FINE PITCH) (\Box 14)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES				
Α	16.0±0.2	0.630±0.008				
В	14.0±0.2	0.551+0.009				
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$				
D	16.0±0.2	0.630±0.008				
F	1.0	0.039				
G	1.0	0.039				
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002				
I	0.10	0.004				
J	0.5 (T.P.)	0.020 (T.P.)				
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$				
L	0.5±0.2	$0.020^{+0.008}_{-0.009}$				
М	0.145 ^{+0.055} _{-0.045}	0.006±0.002				
N	0.10	0.004				
Р	1.0±0.1	$0.039^{+0.005}_{-0.004}$				
Q	0.1±0.05	0.004±0.002				
R	3°+7° -3°	3°+7° -3°				
S	1.27 MAX.	0.050 MAX.				

S100GC-50-9EU-1

REFERENCE DOCUMENTS

NEC Semiconductor Device Reliability/Quality Control System (IEI-1212)
Semiconductor Device Mounting Technology Manual (C10535E)

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.